

1

2

3

4

5

Android Waste Classification

Sean Sutherland1, Richard Robinson2, Emily Mendelson3, Tung Pham4

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: sean.sutherland@queensu.ca

2 e-mail: 16rer@queensu.ca
3 e-mail: 17ecm1@queensu.ca
4 e-mail: 18tp12@queensu.ca

Abstract: The gradual growth of solid waste in the urban area has been and is becoming a great concern for
human health, and could result in environmental pollution and may be hazardous to humanity if not properly
disposed. With that being said, an advanced waste management system is necessary to manage a variety of
waste materials. The most important step of waste management is the separation of the waste into their
designated categories. This process is usually done by manually hand-picking and sorting them into their
designated bins. In order to save time and simplify the process, Queen’s Waste Wizard introduces a waste
classification computer vision model, which is developed using a pre-trained residual net (EfficientNet-B3)
Convolutional Neural Network model, a machine learning tool. The model is used to classify waste into
different groups such as Blue Recycling, Grey Recycling, Landfill and Organics. Our first proposed system
was able to achieve an accuracy of 98% on the validation dataset. An overall 80% accuracy was achieved on
our testing dataset with more realistic examples with background noise. This method is expected to be faster, by
implementing the proposed system without or little human involvement.

1. INTRODUCTION

1.1 Motivation

Globally, annual solid waste is expected to reach 2.2
billion tons by 2025 [1]. Improper waste management
may lead to huge economic, environmental, and public
health issues. As a result, there is a clear need for
proper waste management within public spaces where
a large proportion of waste is improperly discarded.

In 2016, the waste diversion rate of Queen’s
University was measured to be 43.23%, however, over
85% of the current waste stream was composed of
items that can be diverted from landfills [2]. While
Queen’s University has already deployed a waste
lookup application, this tool requires a high amount of
user input. In contrast, computer vision models only
require the user to take a single image of the waste
item for classification. This type of application may

help increase the waste diversion rate on campus by
reducing the amount of misclassified waste.

While there are existing computer vision models for
waste classification, there is limited use of such
models within public spaces. Many models including
those using AlexNet [3] and Inception-ResNet [4] have
been trained for waste classification, however, these
models are large and require a large number of
parameters to achieve high accuracy. Consequently,
many of these models are unable to run on easily
deployable machines such as tablets.

1.2 Related Works

According to a paper published in 2019 by Quoc V. Le
and Mingxing Tan from Cornell University,
EfficientNet is a continuous family of models created
by scaling each dimension with a fixed set of scaling
coefficients. As a result, the depth, width and
resolution of each variant of the EfficientNet models
should be hand-picked to determine the best accuracy.

6

For instance, in a model used to classify Stanford
Dogs, the model EfficientNet B0 was used. It has been
shown in the study that transfer learning result is better
for increased resolution if input images remain small.
However, when training EfficientNet on smaller
datasets, the model faces a risk of overfitting its data.
Hence, data augmentation and pre-processing are
important for EfficientNet. In other words, a useful tip
is that in some cases, it might be beneficial to unfreeze
only a portion of the layers rather than all, as this
makes fine-tuning much faster when using larger
models like B7. Another aspect to keep in mind is that
larger variants of EfficientNet do no guarantee
improved performance, especially for tasks with little
data and few classes. In such a case, the larger variant
of EfficientNet chosen, the harder it is to tune
hyperparameters. In conclusion, it’s important that the
developers take time and experiment with all variants
and play around with the layers in order to receive the
best accuracy.

1.3 Problem Definition

The use of EfficientNet for waste classification may be
ideal in public spaces where models with larger and
more complex architectures are unable to run on small
devices. Models such as ResNet scale up
Convolutional Neural Networks (ConvNets) by adding
more layers, and by scaling by depth [5]. However, it
is not known if this is the most efficient scaling
algorithm as previously, the process of scaling up
ConvNets was poorly understood. This creates a
problem in situations where models require a smaller
size, yet still require high accuracy.

EfficientNet uses a new method of scaling to achieve
better accuracy and efficiency greater than most
traditional ConvNets [5]. Unlike conventional
approaches to model scaling, where network
dimensions are arbitrarily scaled, EfficientNet scales
each dimension with a fixed set of scaling coefficients
[5]. This results in a higher level of accuracy and
efficiency. Furthermore, EfficientNet has several
different versions along with EfficientNetLite versions
that are specifically designed to run on mobile devices
[5].

For waste classification, it is necessary for a model to
classify waste quickly and accurately. Furthermore,
when deployed in a public space, it is also necessary
for the model to run on devices with limited storage

capacity. Due to the high efficiency and accuracy of
the EfficientNet, it is an optimal computer vision
model to retrain for the purpose of waste classification.

2. METHODOLOGY

2.1 Training Data

The goal of our model is to successfully classify
common waste items into four different categories.
These categories are blue recycling (glass, plastic, and
metal), grey recycling (paper and cardboard), along
with organics, and landfill. These were based off the
sorting categories in Kingston Ontario, as this is the
preliminary location the model will be deployed.
Using numerous public databases online, a collection
of 4637 images was established for training data,
summarized in Table 1. The quantity of each category
was modified over time to reflect the difficulty the
model had of classifying that category.

Table 1: Summary of Training Data

Category Image Quantity
Blue Recycling 889
Landfill 1046
Organic 2301
Grey Recycling 404
Total 4637

2.2 Model Framework

To maximize the accuracy of the model, extensive
research was conducted to determine the most
appropriate framework. EfficientNet was found to be
the most appropriate for this application as it can
achieve high accuracy on the ImageNet dataset, while
minimizing the number of parameters. This is very
important for this application as the model will be run
on an android tablet with limited computing power and
must be capable of classifying an image in under a
second. EfficientNet models between B0 and B5 were
tested on our data, and it was found that the increase in
input size from B0 to B3 caused significant
improvements in accuracy, but further scaling had
limited improvements. It was therefore determined that
using the EfficientNet B3 framework using pretrained
weights from the ImageNet dataset was the most
appropriate baseline model. To tailor the model to this
application, an average pooling layer, along with batch
normalization, dropout, and fully connected layers

7

were added on top of EfficientNet. A summary of the
current model can be seen in Figure 1.

Figure 1: Framework of image classification model

2.3 Training

The model was then trained for 20 epochs, until the
validation set accuracy plateaued. to increase the size
of the training dataset, data augmentation was used
including rotating, zooming, shifting and flipping the
preliminary training images. The model was trained in
mini batches of 128 images, and learning rate decay
was used to maximize the validation set accuracy.
Before training, 10% of the data was set aside as the
validation set which was used to measure the progress
of the training. The accuracy and loss function of the
training and validation sets are seen below in Figure 2.

Figure 2 Accuracy and Loss function of training and validation data

As the training and validation set are not entirely
representative of actual images seen by the model was
deployed, a test set was developed to evaluate the
model more accurately. Each of the four team
members took approximately 100 images of common
waste items around their home, in situations more
representative of what the model will be expected to
classify. These were then run through the model to
predict how accurately the system would perform
when deployed.

3. RESULTS AND DISCUSSION
By training the model shown above for 20 epochs, a
peak validation set accuracy of 97% was achieved. The
predicted categories compared to the true categories of
the validation set for each of the categories is visualized
in the confusion matrix in Figure 3.

Figure 3: Normalized confusion matrix of validation set

The testing data collected by the team was then run
through the model, producing an accuracy of 80%. This
is likely representative of the accuracy the model
achieves when deployed around campus, indicating that
there is still further work to be done. The predicted
categories compared to the true categories of the test set
for each of the categories is visualized in the confusion
matrix in Figure 4.

Figure 4: Normalized confusion matrix of test set

8

Testing revealed that there was a significant drop in
accuracy between the validation set and test set. This
means that the data used in the training and validation
sets are not entirely representative of the testing set,
which explains the drop in accuracy. When examining
the training data, the majority of the photos are taken
with white backgrounds, good lighting, and with the
object taking up the majority of the frame. This is not
the case with the testing data where the background is
often a significant part of the image, taken in less than
ideal lighting conditions. To improve the performance
of the model on representative images, the training set
would need to be further expanded, or the quality of the
representative images would need to be improved by
reducing background and lighting effects.

4. CONCLUSIONS AND FUTURE WORK

Recycling can be too easily contaminated when people
do not ensure their waste is placed in the proper bin.
This can be extremely damaging to the recycling
initiatives and efficiencies. This project has
accomplished the training and deployment of a
convolutional neural network to properly classify
waste items into their respective categories: blue
recycling, grey recycling, landfill, and organic. This
was done using transfer learning from the EfficientNet
model which has been converted into a TensorflowLite
model to be deployed locally on an Android tablet.
This model will be used on Queen’s campus to help
Queen’s students recycle more responsibly.

The model can properly classify common waste items
with a 98% accuracy on the validation set. Even with
background noise, activity in the background of
images, that is commonly found in realistic
deployment of software such as this one, the model is
still able to perform with 80% accuracy.

Currently the development on the Android application
is ongoing. Although the model is completely
functional in the Android application the user
experience is still being improved for ease of use to
Queen’s students. Along with improved UX additional
resources are being implemented into the app so that in
conjunction with the model the team can ensure
students have assets easily accessible to completely
responsibly dispose of their waste items. One of the
major additions to the application is common
exceptions with the waste disposal instructions. On

campus certain products are specifically designed to be
compostable even though visually entire plastic and
similar cases. This is being done with location specific
items so that managers of this software can easily set
the location of the tablet to provide location specific
instructions and suggestions.

Future steps also include the secure installation of
Android tablets. To ensure the security of the tablets
they are being installed with brackets at the most
popular locations on campus. This way the model can
be delivered with ease of use and peace of mind from
any vandalism or theft.

REFERENCES

[1] D. Hoornweg, P. Bhada Tata, “What a Waste:
A Global Review of Solid Waste Management,
World Bank, 2012.

[2] GFL Environmental, “2016 Waste Audit
Report”, Queen’s University, October 2016.

[3] Y. Chu, C. Huang, X. Xie, B. Tan, S. Kamal,
X. Xiong, “Multilayer Hybrid Deep-Learning
Method for Waste Classification and
Recycling”, Computational Intelligence and
Neuroscience, 2018.

[4] V. Ruiz, A. Sanchez, J.F. Velez, B. Raducanu,
“Automatic Image-Based Waste
Classification”, Bioinspired Systems and
Biomedical Applications to Machine Learning,
2019.

[5] M. Tan, Q. V. Le, “EfficientNet: Rethinking
Model Scaling for Convolutional Neural
Networks”, International Conference on
Machine Learning, 2019.

9

Predictive Diabetic Risk Modeling

David Huang1, Nick Cheney2, Susan Kovarik3, Ellie Mehltretter4

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: 17dh11@queensu.ca
2 e-mail: 16nrc2@queensu.ca
3 e-mail: 17slk6@queensu.ca

4 e-mail: ellie.mehltretter@queensu.ca

Abstract: As diabetes prevalence continues to accelerate globally, methods to better monitor diabetes
progression are critical in enabling effective preventative action and reducing the burden on local healthcare
systems. Current prognostic models often prioritize between interpretability, by way of stratification on a small
set of lab values, and predictive accuracy using deep learning methods on high dimensional data. The objective
of this study is to develop a wholistic diabetes risk model that has strong predictive ability and maintains
interpretability. Recurrent neural network models were developed on rich EMR data to predict the onset of 10
diabetes-related complications and time series forecasting of six clinically relevant lab tests was used for risk
stratification following American Diabetes Association clinical guidelines. We achieved AUC scores greater
than 85 for 5 out of ten complication onset models, while lab value forecasting for risk stratification using
LSTM and ARIMA models achieved satisfactory RMSE values. In combination, our models provide a
comprehensive understanding of the relative risk level for individuals with diabetes.

1. INTRODUCTION

1.1 Motivation

The global diabetes burden is expected to increase
from 463 million people in 2019 to 578 million people
by 2030 with developed countries seeing the greatest
increase in prevalence rates [1]. In Canada, diabetes
prevalence is expected to increase from 11,232,300 in
2020 to 13.6 million or 32% of all Canadians by 2030.
Moreover, the increase in diabetes prevalence presents
a significant burden on the health-care system. With
the direct cost to the Canadian healthcare system
expected to increase from 3.8 billion in 2020 to 4.9
billion by 2030 [2].

Thus, it is critical to develop improved monitoring
methods to track the overall health status of those
living with diabetes to reduce the diabetes burden on
the healthcare system and to ensure preventative
action can occur before development of life-
threatening complications.

1.2 Related Works

Due to the complex and diverse pathophysiology of
diabetes, the American Diabetes Association (ADA)
recommends individualized treatment and medication
plans [3]. As such several studies have focused on
personalizing treatment by scoring, or stratifying, the
relative health of diabetic patients using clinical test
values. These stratification methods allow for better
resource allocation, help clinicians better monitor the
relative health of their patients and have shown to
improve overall diabetes outcomes [4].

More recently, several prognostic machine learning
models have been developed alongside the increased
adoption of electronic medical records (EMR) systems
by healthcare providers. Excellent in finding statistical
patterns in rich data, Ljubic et. al. demonstrated the
potential for deep learning models trained on EMR
data for Alzheimer’s onset prediction. To capture the
richness of EMR data they trained separate LSTM
models on diagnoses, lab tests, and drug domains. The
drug and lab test domains produced the best results

10

with 0.985 and 0.986 AUPRC respectively while the
diagnoses domain achieved 0.651 AUPRC [5].

1.3 Problem Definition

The complex nature of diabetes and related
complications make it difficult to quantify a patient’s
diabetic risk level. Earlier approaches attempt to
quantify risk by stratifying diabetic patients on a small
subset of well-controlled clinically relevant lab tests.
While stratification by this means is well adopted due
to increased interpretability and practicality in a
clinical environment, it severely under-utilizes the
wealth of data available in today’s EMRs.

On the other hand, recent deep learning models have
taken advantage of high-dimensional data sources and
have shown high prediction accuracy for prognostic
disease models. However, due to the ‘black box’
nature of deep learning models and a subsequent lack
of interpretability, deep learning models have not seen
wide-spread adoption in a clinical setting.

Our goal is to develop a wholistic risk model for
diabetic patients that monitors and predicts their
overall diabetic health using diabetes stratification
methods while also predicting the onset of diabetes
related complications using high accuracy machine
learning models.

2. METHODOLOGY
2.1 Data

To create a comprehensive risk profile for diabetic
patients, we developed two time-series models on
EMR data from the Canadian Primary Care Sentinel
Surveillance Network (CPCSSN). The CPCSSN
database is comprised of anonymized clinical
information from patients presenting with a wide
variety of diseases and is split into several domains
such as billing information, patient demographics, lab
tests and medication [6]. Our first model used the lab
and exam domains to forecast the values of 6 clinically
relevant lab tests while our second model used billing,
demographic, lab, and exam domains to predict the
onset of diabetes-related complications. Diagnosis’
codes were found in the billing domain and were
represented using International Classification of
Diseases-Ninth Revision codes (ICD9).

2.2 Diabetes Stratification

Following the American Diabetes Association (ADA)
clinical guidelines [3], stratification levels were
calculated for HbA1C, blood pressure (systolic and
diastolic), high- and low-density lipoproteins and
triglycerides, and albumin/creatinine ratio lab results.
Two threshold values for each lab test determined the
relative stratification level, 1 to 3, of patients where a
score of 1 represented low values, 2 represented
normal values, and 3 represented high values. The
scores for HbA1C, blood pressure, lipids,
albumin/creatinine ratios and multi-category lipid
averages were found and summed to generate a final
risk score.

Given the time series nature of EMR data, ARIMA
and RNN models were used to forecast the selected lab
values. The ARIMA model is a widely used statistical
method for analyzing time series data. The model takes
three parameters p,d,q where p is the order of the AR
(autoregressive) term or lag order, d is the differencing
order, and q is the order of the MA (moving average)
term respectively. We used the standard parameters of
p = 5, d = 1, m = 0 for our analysis.

Outliers from the series were removed by only taking
data that fell within the inter-quartile range for each
respective feature and 14-day windows were used to
produce fixed time-series data. Thus 14-day forecasts
were generated for each feature and re-stratification
could occur using ADA threshold values. An 80/20
split was used for the LSTM model and each model
was trained on an average of 800 samples.

2.3 Complication Prediction

In our second approach we sought to independently
predict the onset of 10 diabetes-related complications.
These complications were angina pectoris,
atherosclerosis, ischemic heart disease, depressive
disorder, diabetic nephropathy, diabetic neuropathy,
diabetic retinopathy, hearing loss, myocardial
infarction, and peripheral vascular disease. This was
done using both patient diagnosis data and combined
lab and exam result data. These sources of information
provided two approaches which were developed
separately, with the goal of consolidating the results to
form a single model with the highest accuracy. In both
approaches, two deep learning models were employed
consisting of recurrent neural network (RNN)
unidirectional LSTM and bidirectional RNN gated
recurrent unit (GRU) architectures. The complication

11

diagnosis data points were ascertained from the billing
table via recorded ICD-9 code ranges unique to each
complication. A negative dataset was also created for
each positive complication dataset by selecting age and
gender matched diabetic patients without
complications. Data were filtered to exclude results
after the date of complication onset to prevent data
leak and patients in both positive and negative datasets
excluded results prior to each patient’s date of diabetes
onset. Additionally, patients were only included if they
had at least 4 visits and at most 51 visits.

For the diagnosis domain, each patient’s data were
transformed into a one-hot encoded matrix of
dimensions m x n, where m represented the number of
rows or unique dates with at least one result and n =
3397 represented the full range of possible ICD-9
codes that presented at least 10 times in the data. Thus,
each matrix element eij had a value of 1 if the patient
had a diagnosis with an ICD-9 code j on a given date i,
and a 0 otherwise.

For the lab and exam domains, the test results were
filtered to include only 18 selected features, and
outliers for each test type were removed. Each
patient’s results were again represented as one-hot
encoded matrices by binning each test using the 33rd
and 67th percentile values for each respective feature as
thresholds resulting in m x n matrices. Again, m
represented the number of unique dates with one or
more lab/exam results, and n = 54 represented low,
medium, high bins for each feature (18 x 3).

In both approaches, patient’s with less than 50 visits
were padded with zero vectors until they had 50 rows.
Singular value decomposition (SVD) was used to
reduce the dimensionality of input matrices, resulting
in a final dimensionality of 50 x 50 or 2500 features

per patient for the diagnosis domain and 18 x 50 or
900 features per patient for the lab and exam domain.
Finally, encoded patient timelines were modeled using
LSTM and bidirectional GRU layers. Softmax
activation was used to generate onset probabilities.
Figure 1 shows the complication model diagram. A
90/10 training/testing split was used and accuracy was
evaluated using area under the receiver-operator curve
(AUC) metric for each complication and approach.

3. RESULTS AND DISCUSSION

The 5-1-0 ARIMA model produced good results with
the systolic and diastolic blood pressure data. For the
diastolic blood pressure model, a root mean squared
error of 3.620 mmHg was achieved on a range of
diastolic blood pressure values between 82.0 mmHg
and 71.0 mmHg. For the systolic blood pressure data, a
root mean squared error of 6.264 mmHg was achieved
on a range of values between 139.0 mmHg and 121.0
mmHg. The LSTM model produced the best results for
HbA1C, HDL, LDL, triglycerides, and
albumin/creatinine ratio with RMSE values of 5.3 (%),
14.2 (mmol/L), 13.5 (mmol/L), 50.3 (mmol/L), 32.1
respectively.

For our diabetes-complication onset models, it was
found that using the bidirectional GRU model
architecture yielded higher AUC and accuracy values
than LSTM models in all cases, leading us to use it
primarily for model evaluation. A model was
separately constructed and evaluated for each
complication and data source, with the exception of the
diabetic retinopathy model using lab and exam data,
which lacked a sufficient positive sample size (n <
1000). The results are summarized in Table 2.

Figure 1: Onset of complication model diagram consisting of: the patient timeline as an input layer, an embedding layer, bidirectional GRU model
architecture, and a disease risk score as the output layer.

12

The lab and exam data domain produced higher
accuracies for seven out of the ten complications than
the diagnosis domain, suggesting that this source of
data was a better choice for our solution. This finding
is also consistent with previous works [5]. We also
found that models using lab and exam data with less
than 1000 positive patients performed worse with
AUC scores less than 0.8. This is not a surprising
finding since many deep learning models typically
require large training sets for higher accuracies.

Complication

Diagnosis
Data AUC

Lab/Exam
Data AUC

Angina pectoris 0.6373 0.9463

Atherosclerosis 0.6932 0.6249

ICHD 0.6941 0.9273

Depressive disorder 0.6714 0.8122

Nephropathy 0.6865 0.9108

Neuropathy 0.6970 0.9221

Retinopathy 0.6824 N/A

Hearing loss 0.7121 0.6659

MI 0.6298 0.8701

PVD 0.5098 0.5201
Table 1: Results from RNN Bidirectional GRU Models trained on
the diagnosis and lab and exam domains for complication
prediction; ICHD: ischemic chronic heart disease; MI:
Myocardial infarction; PVD: Peripheral Vascular Disease.

4. CONCLUSIONS AND FUTURE WORK

As global diabetes prevalence continues to rise,
diabetes monitoring and forecasting models are critical
for early intervention and prevention of costly
complications. In this study we set out to develop a
wholistic diabetes risk model that encapsulates overall
disease status and diabetes related complication
development likelihood. We were able to successfully
make a two-week prediction on six clinically relevant
lab tests and subsequently calculate stratification levels
as a general risk score. We expanded on this approach
by developing separate GRU models for complication
onset prediction with >0.85 AUC scores for 5
complications.

Without knowledge of the clinical domain, it is
difficult to determine which features are of the most
importance in determining diabetes risk levels. The
features presented in this study, for both models, were
found in literature review where data and features
often differ from study to study. As such, a
combination of features were selected based on
frequency and relevancy reported by other researchers.
To improve model accuracy, better feature selection
can be achieved with the help of a clinical consultant.
Specifically, features with high predictive value such
as cholesterol or Alkaline Phosphatase in serum were
excluded due to a lack of references to these features
in the literature.

In addition, combining the diabetes related
complication models trained on diagnoses data and lab
data has been shown to improve overall model
accuracy [5]. An ensemble model is proposed where
model inputs would include complication onset
probabilities from individual GRU models. Moreover,
an ensemble model allows for greater domain usage as
patient demographic data such as age, gender, and risk
factors can be included as model inputs, providing
even greater predictability and interpretability.

REFERENCES

[1] S. Pouya, "Global and regional diabetes prevalence
estimates for 2019 and projections for 2030 and 2045:
Results from the International Diabetes Federation
Diabetes Atlas, 9th edition," Diabetes Research and
Clinical Practice, vol. 157, no. 107843, 2019.

[2] Diabetes Canada, "Report on Diabetes – Driving
Change," Ottawa, 2015.

[3] American Diabetes Association, "Clinical Practise
Recommendations," Diabetes Care, vol. 22, 1999.

[4] J. J. W. S. R. L. M. L. M. S. R. C. G. P. Charles M.
Clark, " A Systematic Approach to Risk Stratification
and Intervention Within a Managed Care Environment
Improves Diabetes Outcomes and Patient Satisfaction,"
Diabetes Care, vol. 24, no. 6, pp. 1079-1086, 2001.

[5] S. R. X. H. C. M. P. S. O. R. N. L. G. Z. O. Branimir
Ljubic, "Influence of medical domain knowledge on
deep learning for Alzheimer’s disease prediction,"
Computer methods and Programs in Biomedicine, vol.
197, 2020.

[6] A. L.-L. K. M. J. A. L. R. M. S. K. R. B. Tyler
Williamson, "Primary Health Care Intelligence,"
Canadian Primary Care Sentinel Surveillance Network,
2013.

13

Autonomous Highway Simulation with
Smart Cruise Control

Andrew Simonds1, Dylan Moss2, Brock MacDonald3, Azeem Quadri4

QMIND – Queen’s AI Hub

Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: andrew.simonds@queensu.ca
2 e-mail: 15dm28@queensu.ca
3 e-mail: 16bnm5@queensu.ca
4 e-mail: 16saaq@queensu.ca

Abstract: As major automotive companies continue to incorporate new forms of automation into their fleet of
vehicles, one of the major tasks that remains is perfecting self-driving capabilities on highways. The goal of this
project is to use a TurtleBot and the sensors that are provided on the robot to simulate various aspects of an
autonomous highway. We used Gazebo to facilitate testing on the TurtleBot as we developed a multitude of
scripts to recognize lanes, adjust steering and speed, scan for other robots, and remain in the center of the lane.
The robot is also able to recognize if there is another robot in its field of view through both a laser scan and an
image recognition model to match the speed of another robot in front of it.

1. INTRODUCTION

1.1 Motivation
It is evident that our society is currently on the brink of
the next transportation revolution, where autonomous
vehicles are becoming more prevalent on the roads.
Due to this increasing popularity, high-quality data
sets and continuously evolving algorithms are steadily
improving the frameworks of autonomous driving.
These systems are optimized in the hopes to reduce
crashes, pollution and traffic jams while making
autonomous transportation attainable by all. Given this
exponential rise in autonomous driving and
considering the numerous benefits of these systems,
our team found autonomous highway driving to be a
compelling topic to study.

1.2 Related Works
To achieve smart cruise control as a step towards
autonomous driving the first step is to detect the lanes
on the road. The traditional approach is to use
computer vision techniques without machine learning.
This approach as described in “A Precise Lane
Detection Algorithm Based on Top View Image
Transformation and Least-Square Approaches” [1]

involves a perspective transform followed by applying
edge detection techniques such as Canny Edge
Detection and Hough Transform to detect the lane
pixels. Next, a polynomial fitting technique is
performed on the lane pixels to create a single
representation for each lane.

An alternative approach that has now become standard
in industry is to apply deep learning techniques to the
problem. As described in “Reliable multilane detection
and classification by utilizing CNN as a regression
network” [2] this method has been found to be more
reliable and robust across a range of conditions and
does not require as much fine-tuning to the individual
set-up. The trade-off of this method is it requires much
higher computational power to achieve usable results.

The next step in the smart cruise control pipeline is to
create a steering algorithm using the detected lanes as
input. In “Robust PID Steering Control in Parameter
Space for Highly Automated Driving” [3] a
methodology for designing and tuning the controller
used for the vehicle steering is laid out to maximize
stability. A similar methodology can also be adapted
for the vehicle’s acceleration using the detected
distance towards the next vehicle as input.

14

The final feature required for smart cruise control is
the detection of other vehicles and objects. This can be
used to customize the action of the steering and
acceleration controllers based on the type of detected
object or be used to initiate other actions such as lane
changes. In "Vehicle Detection in Deep Learning” [4]
both the traditional computer vision and deep learning
techniques are compared with the conclusion being a
CNN can achieve much more accurate results.

1.3 Problem Definition
Following research into related works in Section 1.2,
the team came to a consensus that a relevant problem
to solve would be an autonomous vehicle in a highway
simulation environment with regulated steering and
speed based on external factors. We believe that many
automotive companies in industry are just now
breaking into this domain, so the research being done
into this area will provide another great opportunity for
improvements in the field of autonomous vehicles.

2. METHODOLOGY

2.1 Preprocessing
The team used a simulated TurtleBot in Gazebo to run
our models and algorithms. Using ROS2 as our
programming framework, we were able to extract
integral information from the various sensors on the
TurtleBot such as velocities and position. It was then
possible to publish to these same topics to meet the
needs of the project. The input data came from the
robot’s LIDAR scanner, the camera feed, and the
velocity sensors. The LIDAR scanner provided
distance measures for potential obstacles at every
degree around the robot, but the search was narrowed
to a smaller field of view in front of the robot to scan
for certain obstacles. The camera data was
manipulated through various image processing
techniques to extract lane information, along with
being saved to use for robot detection. Lastly, the
velocity data was required to ensure the robot moved
at the correct speeds and was able to properly adjust
for either turns or obstacles in its path.

2.2 Solution Implementation
Once all the data was easily accessible through the
multitude of ROS topics, the team worked towards the
initial goal of accurate lane detection and subsequent
robot reaction. Initially, two approaches were taken to
tackle staying within the lanes while traversing the
track. The first was to analyze the angles of the lanes

made in the camera feed and try to optimize the
difference between the two to be zero, however this
was dropped in favor of the more reliable method of
centering the robot between the two base pixels of the
detected lane. The reaction of the robot was to
optimize its angular velocity to remain centered in the
lane using a Proportional-Integral-Derivative (PID)
controller [5]. Next, the team used the LIDAR data
coupled with an image classification model to
implement a smart cruise control feature. Using the
LIDAR distance data and a PID controller, a TurtleBot
is able to maintain a predetermined linear distance
from any object in its path. To ensure the robot is only
maintaining a distance from another TurtleBot and not
something such as a pedestrian or a tree, this feature is
backed with an image classifier to determine if there is
indeed another robot in front of it.

Figure 1: TurtleBots Driving Around Track in Gazebo.

3. RESULTS AND DISCUSSION

Using these detected lanes as input the PID steering
controller worked sufficiently after several iterations
of tuning. The TurtleBot could successfully navigate
indefinitely around the track while stably remaining
within the lanes. If the velocity was increased too high
the TurtleBot experienced substantial overshoot on
tight corners but was able to correct within a few
seconds.

The LiDAR scan was also successful at detecting other
TurtleBots and obstacles. Using this detected distance
as input the acceleration controller successfully
matched speeds to a leading TurtleBot with an
alternating low and high velocity. The track consisted
of a maximum of a forty-degree turn, and the system
accurately handles the distance tracking for these
turns.

15

For the CNN classifier, a data set consisting of 650
images for each of the two classes was collected within
the Gazebo simulation. The data was split into a
training set of 500 images and a test set of 150 images.
On this data, the model achieved an accuracy of 99%.
To validate these results the classifier was tested live
in the Gazebo simulator. The system accurately
detected the TurtleBot at a variety of locations and
distances from the camera and successfully worked
when integrated with the acceleration controller.

Figure 2: Model Loss versus Epochs trained.

Figure 3: Examples of the TurtleBot Class.

Figure 4: Example of the Empty Class.

4. CONCLUSIONS AND FUTURE WORK

In conclusion, the team has utilized the simulation of a
TurtleBot in Gazebo to construct the models and
algorithms needed to simulate autonomous highway
driving, with a smart cruise control system. Using a
TurtleBot allowed for easy real-time data collection of
essential information which allowed the team to have
great success with the project overall.

Future work of this project will consist of additional
testing and optimization of the current system, along
with the implementation of features from the other

Highway Simulation team which consist of lane
detection on a two-lane highway, and lane changing
functionality. With all the features compiled into one
system, the team would then develop a passing
algorithm to allow for one robot to change lanes and
pass by a slow-moving robot in front of it. In addition
to the new features, it is paramount to test the code on
a physical TurtleBot to determine how certain sensors
and actuators behave in a real environment.

REFERENCES
-

[1] B. Dorj and D. J. Lee, "A Precise Lane Detection

Algorithm Based on Top View Image

Transformation and Least-Square Approaches," 30

November 2015. [Online]. Available:

https://www.hindawi.com/journals/js/2016/40580

93/. [Accessed 15 March 2021].

[2] S. Chougule, N. Koznek, I. A. G. Adam, V. Narayan

and M. Schulze, "Reliable multilane detection and

classification by utilizing CNN as a regression

network," 2018. [Online]. Available:

https://openaccess.thecvf.com/content_ECCVW_2

018/papers/11133/Chougule_Reliable_multilane_d

etection_and_classification_by_utilizing_CNN_as_a

_ECCVW_2018_paper.pdf. [Accessed 16 March

2021].

[3] M. T. Emirler, I. M. C. Uygan, B. A. Guvenc and L.

Guvenc, "Robust PID Steering Control in Parameter

Space for Highly Automated Driving," 4 February

2014. [Online]. Available:

https://www.hindawi.com/journals/ijvt/2014/2594

65/. [Accessed 15 March 2021].

[4] A. L. Abbott, D. Pillis and R. M. Buehrer, "Vehicle

Detection in Deep Learning," Virginia Polytechnic

Institute and State University, Blacksburg, 2019.

[5] National Instruments Corp., "PID Theory Explained,"

17 May 2020. [Online]. Available:

https://www.ni.com/en-ca/innovations/white-

papers/06/pid-theory-explained.html. [Accessed 16

March 2021].

This project can be found at:
https://github.com/andrewsimonds14/Highway-

Simulation

16

https://github.com/andrewsimonds14/Highway-Simulation
https://github.com/andrewsimonds14/Highway-Simulation

Virtual Assistant Attention Detection
Ethan Callanan1, Jae Makitalo2, Ella Duffy3, Kavin Zhu4

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: e.callanan@queensu.ca
2 e-mail: jae.makitalo@queensu.ca

3 e-mail:17emld@queensu.ca
4 e-mail:18kz44@queensu.ca

Abstract: The popularity of virtual assistants has been rising at an exponential rate, but they all use the same
unnatural method of keyword activation. The goal of this project was to develop a novel system to provide a
more natural interface for interacting with virtual assistant devices. To achieve this, we developed an attention
detection system using a multitask cascaded convolutional neural network for face detection and a
convolutional neural network for attention classification. The face detector performs with a true positive rate of
95.04%, and the attention classifier performs with 97.2% testing accuracy. The attention detection pipeline was
implemented in a web application simulating a virtual assistant. We plan on improving the generalizability of
the attention classifier by training it on a larger and more diverse dataset, and we plan on implementing the
model in a dedicated device.

1. INTRODUCTION

1.1 Motivation

The use of virtual assistants (VA) has seen a meteoric
rise in past years. In the last two years alone, the
number of VAs in use worldwide has risen from 3.25
billion to 4.2 billion. By 2024 that number is projected
to overtake the world population with approximately
8.4 billion devices [1]. The text-to-speech recognition
segment of the VA market alone was valued at USD
2.2 billion in 2019, and the market is expected to grow
at a rate of 34.4% over 2020 to 2027 [2]. Despite the
technology’s incredible popularity, the way users
interact with the devices has not seen any
development. In social interactions, humans naturally
focus their attention on the speaker; however, none of
the major devices implement vision based interaction
and instead opt for unnatural keyword activation

1.2 Related Works

Developers in the VA field have begun incorporating
computer vision in their products for applications
unrelated to activation. Google has implemented
gesture controls and uses facial recognition for

personalized display in their Nest Hub Max, and
Amazon utilizes face detection to orient the Echo
Show towards the user. Previous applications of
attention detection have largely focused on driver
monitoring. Although they are not designed for VAs,
they operate on the same principles. The most notable
implementation is Comma AI’s driver monitoring
system, which utilizes eye tracking and image
classification to determine whether or not the driver is
paying attention to the road. Researchers at the
Massachusetts Institute of Technology (MIT) built a
gaze estimation model for driver monitoring which
avoids the use of eye tracking [3]. Instead, they opted
to perform face detection with a Histogram of Oriented
Gradients and linear support vector machine to detect
faces, extract the facial landmarks with a cascade of
regressors from a facial landmark mark-up, and
classify the gaze direction in one of six regions with a
random forest classifier.

1.3 Problem Definition

In recent years, the market and use of VAs has grown
rapidly, but the way in which we interact with these
assistants has been largely overlooked. We set out to
design a novel method of interaction, using computer

17

vision, to provide a user experience that more closely
resembles that of a normal conversation. As mentioned
in Section 1.2, using computer vision for tasks related
to attention detection has been explored before.
CommAI’s driver monitoring system heavily relies on
eye tracking, however, eye detection is unreliable in
this application due to the many angles and lighting
conditions a user may interact with the device at. MIT
proposes a more suitable implementation, however
their system uses a six stage pipeline and is a six class
classifier. For the purposes of VA activation, binary
classification will suffice and is both simpler and less
computationally expensive.

2. METHODOLOGY

2.1 Dataset Generation

Training and evaluation is carried out on a dataset of
10 subjects. For each subject, there are 200 real images
and 324 synthetic images, providing 5240 total images
[4]. The images are varied in illumination,
background, and pose (by up to 30 degrees in either
direction). This dataset was supplemented with an
additional 200 images of a sitting subject with similar
variety. Preprocessing of the images involved
converting to grayscale and resizing to 224 pixels
along the smallest edge (maintaining the aspect ratio).
Each image was labelled as either “attentive” or
“inattentive” based on whether or not the subject was
looking towards the camera. A 20% test split was used
to evaluate the models.

2.2 Solution

The solution consists of a two step pipeline: face
detection and attention classification. If the system
passes the first step (face detection) the attention
classifier is activated and makes the binary decision as
to whether or not the user is focusing their attention on
the device.

2.3 Face Detection

A multitask cascaded convolutional neural network [5,
6] (MTCNN) was used to identify if a face is present
in an image frame. The network consists of three
stages in the form of independent convolutional neural
networks (CNN).

The first stage, the proposal network, uses a fully
convolutional network1 (FCN). This network finds
windows in the image that could potentially contain a
face as bounding box regression vectors. The network
performs some refinement to combine overlapping
regions, and outputs the remaining candidate windows.
Next, the refine network performs calibration with
bounding box regression and uses non-maximum
suppression to further combine overlapping windows.
It then outputs whether each candidate contains a face
or not, along with a bounding box and vector for facial
landmark localization (eyes, nose, and mouth).Finally,
the output network operates in a similar fashion to the
refine network, but describes the face in more detail.
This final stage outputs the binary face classification,
along with the bounding box and five absolute
landmark locations: the two eyes, nose, and mouth
corners.

2.4 Attention Classification

Figure 1: A residual block in the ResNet architecture. Layers can
skip subsequent layers in the network through an identity shortcut
connection.

A CNN was used to make a binary classification on
the attentive state of a face. The classifier uses the
ResNet [7] architecture with 50 convolutional layers.
The network achieves far better results with less
training than its shallower counterparts, and manages
to avoid the problem of vanishing gradients2 by
introducing identity shortcut connections. These
connections allow a layer to skip the subsequent layers
and map its output directly to a layer further in the
network as shown in figure 1. The first layer is a 7×7
kernel, the second layer is a 3×3 max pool, and each
subsequent layer is a 3×3 kernel, all using rectified
linear unit activation. Dropout was applied for
regularization and to prevent co-adaptation of neurons.

2 Repeated multiplication during backpropagation causes the
gradient to shrink. If a network is sufficiently deep, this will cause
massive degradation in performance.

1 A CNN without a dense layer.

18

Training was performed with the Adam optimizer [8]
using negative log likelihood loss for 10 epochs.

2.5 Virtual Assistant Integration

The model was implemented in a Streamlit
web-application made to simulate a VA device. The
model analyzes every other frame to make its
classification on the user’s attentive state. When the
user is attentive for 10 consecutive frames (five
consecutive positive classifications from the model),
the app waits for the user to begin speaking and listens
until they complete their sentence. The recording is
then sent to a custom Dialogflow agent through the
dialogflow API and both the audio and text responses
are displayed to the user.

3. RESULTS AND DISCUSSION

The face detector performs at a true positive rate of
95.04% and the attention classifier achieved an
accuracy of 97.2% on the test set.

Figure 2: Learning curve of the attention classifier.

The accuracy of the models closely reflects its
practical performance in conditions similar to the
training data. Interacting with the assistant was a
nearly seamless user experience3, and false positives
were handled by the assistant activation logic in the
application. False negatives from the classifier
occasionally delay the activation of the assistant, but
these occurrences are infrequent enough not to
diminish the overall user experience.

Despite the attention classifier’s accuracy in controlled
conditions, when presented with poor lighting or
unfamiliar angles the performance suffered. This is
likely largely due to the consistent set of lighting and
angles in the training images. Additionally, all the
images were taken at similar distances from the
camera. As such, in significantly unfamiliar conditions

3 Demo interaction is shown at
https://www.youtube.com/watch?v=0-YFEVMPsV8

the model will get stuck on one of the two
classifications.

4. CONCLUSIONS AND FUTURE WORK

The two components of the attention detection pipeline
were successfully built. Both models performed well
in a testing environment and in controlled live
environments. In unfamiliar contexts the attention
classifier did not perform as well. Reflection on the
training data suggests this was due to insufficient
variety in the image attributes. The models were
integrated with a proof of concept VA application and
provided a positive user experience.

We aim to improve the generalizability of the attention
classifier by training on a more varied dataset. Images
of subjects taken from different angles, elevations, and
distances will help the model handle the many edge
cases that arise from live classification. Performance in
poor light conditions may also be improved by adding
more images in low light and with different light
sources. Finally, we plan on implementing the model
and activation logic in a dedicated VA device.

REFERENCES

[1] Statista Research Department, “Number of
voice assistants in use worldwide 2019-2024”,
Statista, 22 Jan 2021.

[2] Grand View Research, “Intelligent Virtual
Assistant Market Size, Share & Trends
Report”, Grand View Research, Apr 2020.

[3] L. Fridman, P. Langhans, J. Lee, B. Reimer,
“Driver Gaze Region Estimation Without
Using Eye Movement”, MIT, 1 Mar 2016.

[4] “Face Recognition Database”, MIT Center for
Biological and Computational Learning.

[5] K. Zhang, Z. Zhang, Z. Li, Y. Qiao, “Joint face
detection and alignment using multitask
cascaded convolutional networks”, IEEE
Signal Processing Letters, 11 Apr 2016.

[6] https://github.com/davidsandberg/facenet
[7] K. He, X. Zhang, S. Ren, J. Sun, “Deep

Residual Learning for Image Recognition”,
2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[8] D. P. Kingma and J. L. Ba, “Adam: A method
for stochastic optimization,” in 3rd
International Conference on Learning
Representations, ICLR 2015 - Conference
Track Proceedings, 2015.

19

https://www.youtube.com/watch?v=0-YFEVMPsV8
https://github.com/davidsandberg/facenet

Music Genre Classification Using K-Nearest
Neighbours And Neural Networks

Caio Coelho1, Renay Rahman2, Benjamin Tilden3, Walter Hasick4

Western AI Club

Western University, London, ON N6A 3K7, Canada.

1 e-mail: ccoelho6@uwo.ca
2 e-mail: rrahma33@uwo.ca

3 e-mail: btilden@uwo.ca
4 e-mail: whasick@uwo.ca

Abstract: As one of the teams in Western AI’s Intermediate Project cohort, we explored and learned about the
use of supervised learning within music genre classification. Our team had an opportunity to extract song
features, build and train multiple models, then compare and build a single, most accurate model as a team.
Initially, we created a KNN model with an accuracy of roughly 45%. Then, we tried a simple neural network
model and achieved 62% accuracy. Using the neural network approach, we created a final, multi-layer model
that reached 66% accuracy. Our team believes the AI community can benefit from making models more
accessible to external users. We often hear about new, advanced models being published, but the average
person rarely gets to try them. For that reason, we decided to publish our model to a website that we created
leveraging Flask and Tensorflow.js. Anyone can access the website, easily upload a song and get a prediction
back from the model.

1. INTRODUCTION

1.1 Motivation

With the increased popularity of music streaming
services such as Spotify and Apple Music, the problem
of music genre classification is becoming more
relevant. The website “Every Noise at Once” reports
5,283 different genre distinctions on Spotify as of
2021-03-22 [1], which demonstrates the subjective
nature of this classification and highlights a possibility
of using Machine Learning to achieve a more accurate
categorization.

This paper aims to compare the performance of K-
Nearest Neighbors (KNN) algorithms to that of
Artificial Neural Networks (ANN) in classifying songs
into ten genres by analyzing Mel-Frequency Cepstral
Coefficients (MFCC) extracted from songs. As part of
this project, we were also motivated to make our
classifier model easily accessible online. For that
reason, we published a website [2] where anyone can
upload a song and get back a classification for it.

1.2 Related Works

An essential part of our work was extracting MFCCs
from the music files. The paper “Music genre
classification using MIDI and audio features.” [3]
explores a similar approach to our problem and
provides evidence that the accuracy of genre
classification using MFCC is one of the best when
compared to other feature extraction techniques such
as BEAT, STFT, and MPITCH.

Similarly, the paper “Automatic Music Genre
Classification for Indian Music”[4] provided insight on
the applicability of KNN models using MFCC data but
concluded that KNN is not the best model for the task
at hand and that MFCC data alone is not enough to
achieve the highest possible accuracy.

1.3 Problem Definition

The scope of this project is to explore how accurately
simple KNN and neural network models can classify
songs into genres. To perform this classification, we
also had to explore ways to extract audio features from
the songs using MFCCs; an audio file contains

20

millions of bits, so it cannot be easily used as input and
has to be reduced to only a few coefficients.

2. METHODOLOGY

Instead of using a pre-existing dataset, our team
elected to extract our data from songs to encompass
the entire data science process further. Feature
extraction is a necessary and crucial part of analyzing
and finding relations between different songs. Raw
audio data cannot be understood by models and instead
must be converted into understandable format features,
usually in the form of coefficients or single values.

First, raw audio data needed to be converted into a
spectrogram. “A spectrogram is a visual representation
of the spectrum of frequencies of sound or other
signals as they vary with time.” [5] It’s a
representation of frequencies changing with respect to
time for given music signals [6].

Figure 1: An example of a spectrogram

Upon converting the audio files, we were able to
extract several features using a Python package,
Librosa. Features included zero-crossing rate, spectral
centroid, spectral roll-off, and most importantly (the
features which had the most significant effect on the
accuracy of our model), the Mel-Frequency Cepstral
Coefficients. MFCCs of a signal are a small set of
features (usually about 10–20) that concisely describe
the overall shape of a spectral envelope [6]. Once we
extracted the features of all 1000 songs used in our
training data, we were able to classify songs into
different genres.
To classify the datasets, the group elected to begin
with a KNN algorithm. KNN was selected as a starting
point because the implementation is relatively simple,
and it requires very little computational complexity.
The results of the KNN model were then used as a
baseline for evaluation of more complex models better
suited to the task of classifying music genres. As the
KNN model is sensitive to noisy data and outliers, the

optimal model would be robust enough to handle
outliers and predict more complex non-linear
relationships. For these reasons, the group elected to
proceed with an Artificial Neural Network (ANN)
model. To evaluate the proposed solution, it would
have to achieve a higher accuracy than the KNN model
on the test set.

Additional analysis was performed on the ANN model
to determine the optimal number of hidden layers, in
addition to hyper parameter tuning. To determine the
ideal number of hidden layers, the hyper parameters
were held constant while adding layers until the
system's performance increase did not outweigh the
computational cost. Once the number of hidden layers
was selected, the hyper parameters such as learning
rate were tuned until the model achieved the highest
possible accuracy.

3. RESULTS AND DISCUSSION

To determine if the ANN model was appropriate for
the task of classifying music genres, it was compared
against the baseline KNN model. Table 1 demonstrates
the results of each model.

Model Test
Accuracy

Train Accuracy

KNN 42.88% 61.05 %

ANN_
1

63.80 % 96.38 %

ANN_
2

64.90 % 98.62 %

ANN_
3

65.80 % 99.37 %

Table 1: Accuracy Results of models

ANN_1 describes the most basic ANN model with two
hidden layers, while ANN_2 describes a 3 hidden layer
model with no hyperparameter tuning, and finally
ANN_3 represents the third and most robust model
containing 3 hidden layers in addition to
hyperparameter tuning. It is evident from the results
that the ANN is indeed an appropriate model to
classify the data as its performance is superior to that
of the KNN. Additionally, it is apparent that the
accuracy increases as the model complexity increases,
which is an important insight. Figure 2 shows the

21

training and validation accuracy as a function of
number of epochs

Figure 2: Training and validation accuracy plot

The result of Figure 2 again demonstrates the
correlation between increase in hyper parameters, and
improved accuracy in the model. The results are as
expected and validate the assumption that increased
model complexity will lead to increased performance.

From the project, the group has learned that model
selection contributed the most to the results. Although
slight increments in performance were achievable
using hyperparameter tuning, having the right model
for the task is the best approach to improve the
performance.

4. CONCLUSIONS AND FUTURE WORK

All in all, our project produced a model that correctly
classifies songs into genres with 65.80% accuracy.
During the development period, our team created
models that use extracted MFCCs to categorize the
songs. The first model, using a KNN algorithm, only
achieved an accuracy of approximately 42.88%.
However, transitioning into a simple neural network
brought the prediction accuracy up to 65.80%.

In the future, our team aims to attain higher accuracy
by experimenting with different models and different
feature extraction methods. In an article published in
2018 [7], the authors combined MFCC feature
extraction along with Principal Component Analysis
(PCA) to improve their speech recognition system.

The addition of PCA reduced the number of MFCCs
used by the model, which consequently increased the
accuracy of their system from 86.43% to 89.29% [7].
We believe a similar approach, using PCA, can be
used to improve the accuracy of our music genre
classifier.

REFERENCES

[1] G. McDonald, Every Noise at Once. [Online].
Available:
https://everynoise.com/everynoise1d.cgi?scope
=all. [Accessed: 24-Mar-2021]

[2] Cataltepe, Zehra, Yusuf Yaslan, and Abdullah
Sonmez. "Music genre classification using
MIDI and audio features." EURASIP Journal
on Advances in Signal Processing, 2007.

[3] Ş. Umut. "Automatic music genre classification
using bass lines." 2010 20th International
Conference on Pattern Recognition. IEEE,
2010.

[4] C. C. Coelho, B. Tilden, R. Rahman, W.
Hasick. Music Genre Classification.
https://wai-music-genre-
classification.herokuapp.com/.

[5] Spectrogram. (2021, January 19). Retrieved
October 16, 2020, from
https://en.wikipedia.org/wiki/Spectrogram#:~:t
ext=A%20spectrogram%20is%20a%20visual,a
s%20it%20varies%20with%20time.&text
=Spectrograms%20of%20audio%20can%20be,
the%20various%20calls%20of%20animals.

[6] Doshi, S. (2019, April 04). Extract features of
music. Retrieved October 16, 2020, from
https://towardsdatascience.com/extract-
features-of-music-75a3f9bc265d

[7] Winursito, Anggun, Risanuri Hidayat, and
Agus Bejo. "Improvement of MFCC feature
extraction accuracy using PCA in Indonesian
speech recognition." 2018 International
Conference on Information and
Communications Technology (ICOIACT).
IEEE, 2018.

22

3D Human Body Shape Generation

Ethan Bonnardeaux1, Spencer Hill2, Daniel Stewart3, Noah Cabral4

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: 18ejb@queensu.ca
2 e-mail: 18sjch@queensu.ca

3 e-mail: daniel.stewart@queensu.ca
4 e-mail: 15nsc4@queensu.ca

Abstract: Generating point cloud models has become an increasingly popular practice within the machine
learning community. Human shape data is the key to producing advancements within medical imaging, virtual
reality, gaming, and animation fields. Learning object structure in 3-dimensional space presents many
challenges in which deep learning networks have become iteratively capable of resolving. In this paper, we
utilize a proven generative modeling technique to learn the approximate representation of human body shapes
on point cloud data from the Semantic Body Models Dataset. By leveraging TreeGAN, a tree-based graph
convolution generator network, our model is capable of learning the different segments of the human body in an
unsupervised fashion. This approach combines the classic Generative Adversarial Framework with a nuanced
generator that boosts its feature representation by sequentially accessing historical prediction states. Due to the
consistent internal nature of human body shape data, we only sample points from the surface of the body,
similarly restricting the model’s learned representations.

1. INTRODUCTION

1.1 Motivation

Recently, neural networks involving 3D data have
attracted significant research interest. Since the
introduction of Point Net in 2016, 3D point clouds
have emerged as the most computationally efficient
method of interpreting 3D data [1]. While most work
has focused on object segmentation, classification, and
object detection, in 2019 a novel architecture
(TreeGAN) was proposed for 3D point cloud
generation [2]. Leveraging the Generative Adversarial
Network (GAN) [3] framework and tree-based graph
convolution networks (GCNs), TreeGAN achieved
seminal results on the ShapeNet40 dataset [2].
However, little to no work has been done to expand
this object generation to more impactful datasets.

The immediate application of human body generation
is to computer vision and medical imaging fields. The
interpretation and generation of the human figure is an
essential computer vision task that has received little

attention. Furthermore, medical privacy restrictions
make novel human body generation beneficial to
training medical students and artificial intelligence
systems on this data.

1.2 Related Works

1.21 Point Clouds, Neural Networks, and GANs

Most researchers transform point cloud data into 3D
voxel grids or collections of images before running the
data through deep learning pipelines. Charles et al. [1]
proposed PointNet, a novel neural network that
directly consumes point cloud data, which well
respects the permutation invariance of point clouds.
PointNet can be trained to perform 3D shape
classification, shape part segmentation and scene
semantic parsing tasks. Since the invention of
PointNet, point cloud data have been used not just in
classification networks but also in generative tasks.
For example, Achlioptas et al. [4] proposed a GAN for
the generation of 3D points clouds called r-GAN. The
generator for r-GAN is based on fully connected

23

layers, leading to r-GAN having difficulty in
generating realistic shapes with diversity.

1.22 Improved Training of Wasserstein GANs

A common issue in training GANs is the stability of
training. Arjovsky et al. [5] introduced Wasserstein
GAN, which uses an efficient approximation of the
earth mover's distance function to optimize the
discriminator and generator in GAN training. WGAN
improved training stability and provided a meaningful
loss metric that correlated with the generator's sample
quality. However, WGAN still suffered from poor
sample generation or a failure to converge, and it has
been found that this is due to the weight clipping used
to enforce a 1-Lipschitz continuous constraint on the
critic. Gulrajani et al. [6] introduced gradient penalty,
an alternative to weight clipping. It penalized the norm
of the critic gradient with respect to the critics input,
improving the sample quality and ability to converge
for WGANs.

1.23 Graph Convolutional Networks

Over the past few years, many works have focused on
using deep neural networks for graph problems.
Defferrard et al. [7] proposed fast-learning
convolutional filters for graph-based applications,
significantly accelerating one of the main
computational bottlenecks in graph convolution
problems with large datasets. Kipf and Welling [8]
introduced scalable GCNs, where convolution filters
use only the information from neighboring vertices
instead of from the entire graph. All the GCNs
mentioned prior are designed for classification
problems, meaning that the connectivity of nodes in
the graph were known beforehand. This issue will
present challenges for the generation of 3D point
clouds, where the connectivity is not known.

1.24 GCNs and GANs for 3D Point Clouds Generation

A number of works have tackled the issue of
connectivity. Valsesia et al. [9] dynamically generated
adjacency matrices using the feature vectors from each
vertex at each layer of graph convolutions during
training. Unfortunately, computing this matrix at a
single layer incurs a quadratic computational
complexity on the number of vertices. This approach is
not effective for multi-layer and multi-batch networks.
Dong et al. [2] proposed TreeGAN, which, like the
other work, requires no prior knowledge regarding
connectivity. TreeGAN, however, is much more
computationally efficient as it avoids constructing
adjacency matrices. It uses a tree-based graph

structure, and it exploits this structure by using
ancestor information to propagate features over the
graph. The tree-based graph structure also has the
benefit of allowing the network to generate point
clouds for different semantic parts of a model without
prior knowledge.

1.3 Problem Definition

In this paper, we introduce point cloud generation of
human body shape representations from randomized
latent vectors. We explore the semantic parametric
reshaping of human body models dataset [10] (a
derivative of the Caesar dataset) to train our model.
Historically, point cloud generation has been explored
solely on the ShapeNet40 dataset. This dataset
contains 40 different object classes and enables the
generator models to produce a wide range of outputs.
Currently, the TreeGAN paper has achieved state-of-
the-art results on this dataset. We aim to train a
generator on a single object class with a higher point-
cloud resolution (3072 points) to produce increasingly
granular results.

2. METHODOLOGY

2.1 Dataset

The dataset used to train and evaluate our model is
composed of 3048 scanned body models. More
precisely, there are 1531 male models and 1517 female
models. To generate this dataset, we collected the
mesh models from the publicly accessible dataset:
Semantic Body Models Dataset [10]. The decision to
develop our dataset from the Semantic Body Models
Dataset is driven by the fact that it is open-sourced and
completely available to the public and research
communities. Further, the meshes in this dataset are
pose-invariant, thus, allowing for more efficient
learning of the true biological features of the human
form rather than differences in pose.

24

https://arxiv.org/abs/1905.06292

Mesh objects are highly memory-intensive due to the
nature of their vertex-facet construction. Thus, point
clouds from scanned meshes were built using an even
surface sampling method to construct the point clouds
from 3072 evenly spaced points on the surface of the
mesh. This method of surface sampling was done for
two reasons. The data points within the volume of the
mesh do not significantly contribute to the learned
features of the human form under the assumption that
models are not hollow; Surface sampling maximizes
the resolution of features using a point cloud
representation while also minimizing memory and
compute costs.

Figure 2 Data example from the Semantic Parametric Reshaping of

Human Body Models dataset and a point cloud sample used in model
training.

2.2 Model Architecture

Our model is built on the GAN framework, in which a
generator and discriminator model train sequentially
according to respective loss functions introduced in
Wasserstein GAN [5].

𝐿 = −𝐸𝑧∼ 𝐷 𝐺(𝑧) , (1)

𝐿 = 𝐸𝑧∼ [𝐷(𝐺(𝑧))] − 𝐸𝑧∼ [[𝐷(𝑥)]

+𝜆 𝑝𝐸𝑥 |𝛻𝑥𝐷(ˆ𝑥)| − 1 . (2)

G and D denote the generator and discriminator
networks, z is a latent vector created using a normal
distribution, 𝑥 are line segments between real and fake
point clouds, x ′ ∼ G(z) and x represent real and fake
point clouds respectively, and R is the real data
distribution. We also apply a gradient penalty, 𝜆 𝑝, to
satisfy the 1-Lipshitz condition for GANs.

The generator leverages tree convolutions defined by

𝑝 +1 = 𝜎 𝐹 𝑝 + 𝑈 𝑞 + 𝑏
𝑞 ∈ 𝑝

, (3)

which is thoroughly described in (tree-GAN).

The generator takes as input a 96-dimensional latent
vector, and through the convolution defined above,
conventional convolutional neural network loop terms,
and upsampling through defined branching, outputs a
set of 3072 3D points. Figure 1 shows the generator
built with tree-GCN layers.

As standard in GAN training, the Adam optimizer was
used with the custom loss functions shown in (1) and
(2).

3. RESULTS AND DISCUSSION

GAN evaluation metrics are an ongoing discussion
within the research community as quantitative
evaluation methods are continuously being introduced
to measure crucial elements of a Generator’s
performance. Given the nature of this project, the
appropriate evaluation metrics are Jensen-Shannon-
Divergence (JSD), Coverage (COV-ED, COV-MMD),
and Minimum Matching Distance (MMD) [11]. These
metrics require a MMD comparison between the

Figure 1 TreeGan Generator Architecture [2]

25

reference data and the generator’s closest
representation per reference example. Our model is
currently on ~epoch 500 within the training process
and produces outputs as seen in figures 3, 4. Per
qualitative examination, the generated results are not
yet at comparable to the training data and minimum
matching distance would provide inaccurate pairings
between the generated and reference examples,
resulting in a misleading evaluation of the model’s
efficacy.

Figure 3 Generated Human Body Shape rotated 45 degrees along Z-axis.

Figure 4 Alternate Generated Human Shape (Side View)

Upon observation, the model has clearly learned the
basic features of a human body. Specifically, it has
begun representing the chest, arms, legs, and head. As
the training progresses, the amount of noise in the
generated examples is expected to significantly
decrease. The TreeGAN architecture was designed for

non-hollow 3D point-cloud data. Due to the hollow
composition of human shapes within our dataset, the
generator has had difficulty minimizing its loss on the
cylindrical-like components of the bodies.

4. CONCLUSIONS AND FUTURE WORK

In this project, we trained a TreeGAN model to
introduce the generation of human body shapes to the
machine learning community. We discovered a
drawback when applying this architecture to hollow
shapes. Future work on this problem should involve
alterations within the TreeGAN architecture to
effectively handle hollow data. Interpolation would
also be an interesting area of exploration for a final
model to permit controllable generation.

REFERENCES (IEEE format)

[1] Charles R. Qi et al. (2017). PointNet: Deep
Learning on Point Sets for 3D Classification
and Segmentation.

[2] Dong Wook Shu et al. (2019). 3D Point Cloud
Generative Adversarial Network Based on Tree
Structured Graph Convolutions

[3] Ian J. Goodfellow et al. (2014). Generative
Adversarial Networks

[4] Panos Achlioptas et al. (2018). Learning
Representations and Generative Models for 3D
Point Clouds

[5] Martin Arjovsky et al. (2017). Wasserstein
GAN

[6] Ishaan Gulrajani et al. (2017). Improved
Training of Wasserstein GAN

[7] Michaël Defferrard et al. (2017). Convolutional
Neural Networks on Graphs with Fast
Localized Spectral Filtering

[8] Thomas N. Kipf et al. (2017). Semi-Supervised
Classification with Graph Convolutional
Networks

[9] Valsesia, Diego & Fracastoro et al. (2019).
Learning Localized Generative Models for 3D
Point Clouds via Graph Convolution.

[10] Yipin Yang et al. (2014) . Semantic
Parametric Reshaping of Human Body Models.
In 3DV Workshop on Dynamic Shape
Measurement and Analysis.

[11] Panos Achlioptas et al. (2018). Learning
Representations and Generative Models for 3D
Point Clouds

26

https://users.soe.ucsc.edu/~davis/papers/2014_3DV_SemanticBodyModels.pdf
https://users.soe.ucsc.edu/~davis/papers/2014_3DV_SemanticBodyModels.pdf
https://users.soe.ucsc.edu/~davis/papers/2014_3DV_SemanticBodyModels.pdf
https://users.soe.ucsc.edu/~davis/papers/2014_3DV_SemanticBodyModels.pdf

Accessibility Bot
Michael Olson1, Kevin Quijalvo2, Kiera Lowman3, Madeline Mackie4

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada.

1 e-mail: michael.olson@queensu.ca
2 e-mail: 18mkq@queensu.ca
3 e-mail: 18knl2@queensu.ca

4 e-mail: 19mcm6@queensu.ca

Abstract: This paper presents a potential solution for the lack of publicly available and reliable information on
the accessibility of specific public buildings. We present a method to collect 3D models of an indoor space using
a Turtlebot 3 and a IntelRealsense depth camera, and a method for accessibility feature extraction in the form
of a convolution neural network trained on a dataset of indoor features related to accessibility.

1. INTRODUCTION

1.1 Motivation

People living with physical disabilities, particularly those
with motorized wheelchairs can have trouble accessing
public spaces [1]. Currently the sources of information
on the accessibility of specific public spaces are scattered
and unreliable, and whether a public space is
maneuverable for an individual is determined largely
based on previous experience. Currently there is no
publicly available database of 3D models of building
interiors for the purpose of accessibility. Open source
tools to map public spaces and present them with specific
features highlighted exist and are widely available, but
have not yet been applied to this specific purpose.

We hope to address the need for data related to the
accessibility of public spaces by using modern mapping
and feature analysis techniques.

1.2 Related Works

Several techniques have been developed for mapping
interior spaces. Exploration of an Indoor- Environment
by an Autonomous Mobile Robot was completed at the
University of Kaiserslautern by Thomas Edlinger and
Edwald Von Puttkamer [2]. This project chose to use a
“Bubble Method”. This method worked, through a virtual
bubble forming with borders, which were determined by
the scanner, forming around the robot. The robot was

then programmed to explore the bubble causing the
virtual bubble to deform until there were no more virtual
borders. The Robot continuously searching for virtual
borders ensured that new data of new locations was
collected. While the robot was exploring data was also
collected about the location of the real boarders. The
results that were obtained from the project at the
University of Kaiserslautern were that this method works
in most indoor environments, as well as can be executed
in real time, therefore is suitable to be installed on
autonomous mobile robots.

There are many popular and publicly available solutions
for classifying images. One of these systems, Residential
Energy Service Network (ResNet) is a common deep
learning method that can be used for image
classification[4]. The development ResNet addressed the
issue of the vanishing gradient problem, which is an
issue that unrolls the network each input time step
resulting in a very deep network that requires weight
updates [3]. This issue was solved through the creation of
residual blocks which allows connections to be skipped
and the residual to be passed on to following layers.
Overall allowing the neural networks to be more
dynamic [4].

1.3 Problem Definition

There is currently no way for the approximately 300,000
Canadians aged fifteen and older who use a wheelchair to
easily determine whether they will be able to access

27

small establishments such as restaurants and shops [5].
Their only options are to travel to the building to
investigate or to depend on the potentially unreliable
testimonies of business owners, online reviewers, and
friends and family. We aim to develop a technology that
will allow wheelchair users and other individuals with
physical disabilities to have access to all of the
information required to determine if a space is accessible.
This includes specifications such as the width of
doorways, the height of steps, and the location of
handrails.

The objective of this project is to program a robot to
autonomously explore and map an indoor space and
identify features that promote or hinder accessibility. In
order to successfully navigate the space, the robot must
use a simultaneous location and mapping (SLAM)
algorithm. The camera data would be sent from the
Waffle Pi to a computer to create a 3D map and identify
important aspects of the space. The solution must
integrate SLAM, 3D mapping, and object detection to
effectively aid people living with physical disabilities in
their daily activities.

2. METHODOLOGY

2.1 Hardware Integration

Proper implementation of our idea meant that we needed
to be able to control the robot remotely, and also to
remotely receive image data from the camera attached to
the robot.

The first step was configuring the Robot Operating
System (ROS) on the robot. ROS was essential for us to
interface with the robot’s hardware, including the
cameras, the wheels, etc. ROS uses a “topic” system that
allows us to obtain information about the hardware and
sensors (e.g. battery life, velocity, location, etc.). By
“subscribing” to these topics, we can obtain the
information. Through SSH, we remotely accessed the
robot, and then downloaded and installed pre-built
TurtleBot3 software directly onto it. The same software
packages were also installed on another computer that
was used to remotely control the robot. The pre-built
TurtleBot3 packages already included a script that
allowed us to control the robot with a keyboard and
mouse.

Another crucial step was configuring the Intel RealSense
camera, and setting up the robot to send its data to the
laptop remotely. Since ROS was already being used to
interface with other hardware on the robot, we naturally
had to install the appropriate ROS wrapper for the Intel

RealSense camera. The wrapper allows us to send the
camera’s data directly to the laptop using ROS’s topic
system. By subscribing to the appropriate camera topics
using rviz (a visualization tool built into ROS), we were
able to see the 3D models and images that the camera
was generating in real-time.

Figure 1: Example of a 3D model generated by the Intel RealSense
camera in rviz.

2.2 SLAM

SLAM involves the robot being able to autonomously
move and map the area without having a human control
it.

By utilizing Intel’s RealSense wrapper to obtain
information from the camera, the data can be used with
other open-source ROS localization packages to get the
robot to move autonomously and map its surrounding
area.

2.3 Dataset and Model Creation

It proved challenging to find an openly available dataset
containing images of indoor building features that are
important for accessibility. Consequently, a dataset was
created using Google Images. We attempted to download
images using the Javascript Console of Google Chrome,
but the browser began blocking our attempts after a few
successful trials. The images were instead obtained using
a less efficient Google Chrome extension. The dataset
contained 1500 images of stairs, handrails, and doors.

A machine vision model was built by retraining the
Inception ResNet v2 model available through Keras, an
open-source Python library. We chose to use this model
because it uses a convolutional neural network (CNN),
which provides very high accuracy for image
classification, which has been demonstrated against the
ImageNet dataset. The last Dense layer was changed to
have an output dimensionality of 3, which corresponds to
the number of classes that our model currently detects.

28

For validation, we randomly selected 20% of the images
from our dataset.

Figure 2 above shows the last few layers of the model’s
structure:

Figure 2: Last chunk of layers of the model structure

Note that the main difference between Inception ResNet
v2 and our version of the model is the last layer.

3. RESULTS AND DISCUSSION

Using the modified version of Inception ResNet v2, we
were able to achieve an accuracy of 75% and a loss of
5.8 against the validation images selected from our
dataset.

After testing using images taken with a phone, and other
images taken from Google Images, we found that the
model struggled to classify the images reliably. It also
struggled to classify images within the dataset we
created. This was indicative of an underfitted model.

Due to the limited size of the dataset, and the naive
approach to training, these results were about as
expected. Our approach with changing the single layer
had the advantage of being quick to implement, and it
demonstrated potential. However, the accuracy of this
current implementation is too low for practicality.
Further model modification and fine-tuning, or even
considering using or creating a different model
architecture that caters towards our use case has the
advantage of being more reliable, which is the ultimate
goal.

Unfortunately, due to version mismatching with the
open-source ROS libraries between the laptop and the
robot, we were also not able to get SLAM functionality
fully working. We were only able to move the robot
manually using a keyboard and mouse, and had to map
the robot’s surrounding area under our control.

4. CONCLUSIONS AND FUTURE WORK

The goal of this project was to program a robot to
autonomously map and explore a space and identify key
features for accessibility. The retrained CNN recognized
doors, stairs, and handrails in the validation set with an
accuracy of 75%. The precision of the model could be
improved by at least 20% through using a larger dataset
and further refining the model. Further work on the
hardware platform, and to the SLAM software is
required. Additionally, further work is required in
implementing a direct pipeline from the realsense camera
to the CNN.

REFERENCES

[1] “Power wheelchair driving challenges in the
community: a users' perspective,” Taylor &
Francis. [Online]. Available:
https://doi.org/10.3109/17483107.2014.898159.
[Accessed: 25-Mar-2021].

[2] T. Edlinger and E. von Puttkamer, “Exploration
of an Indoor-Environment by an Autonomous
Mobile Robot,” 16-Sep-1996. [Online].
Available:
https://www.cs.cmu.edu/~motionplanning/papers/
sbp_papers/integrated1/edlinger_exploration.pdf.
[Accessed: 24-Mar-2021].

[3] J. Brownlee, “How to Fix the Vanishing
Gradients Problem Using the ReLU,” Machine
Learning Mastery, 25-Aug-2020. [Online].
Available:
https://machinelearningmastery.com/how-to-fix-v
anishing-gradients-using-the-rectified-linear-acti
vation-function/. [Accessed: 25-Mar-2021].

[4] R. Z. Zheng, “Beginners' Guide to Image
Classification: VGG-19, Resnet 50 and
InceptionResnetV2 with TensorFlow,” Medium,
29-Apr-2020. [Online]. Available:
https://cutt.ly/4xP1jmH. [Accessed:
25-Mar-2021].

[5] Statistics Canada, “Needs for mobility devices,
home modifications and personal assistance
among Canadians with disabilities,” Statistics
Canada, Aug. 16, 2017. [Online]. Available:
https://www150.statcan.gc.ca/n1/pub/82-003-x/2
017008/article/54852-eng.htm. [Accessed: Mar.
15, 2021].

29

https://doi.org/10.3109/17483107.2014.898159
https://www150.statcan.gc.ca/n1/pub/82-003-x/2017008/article/54852-eng.htm
https://www150.statcan.gc.ca/n1/pub/82-003-x/2017008/article/54852-eng.htm

Application of Neural Networks for Heart
Disease Prediction

Ayushi Kardam1, Emily Wang1, Delaney Stevens1, Jade Codinera1, Jordan Ingram1

Western AI, Western University

Western University, London, ON N6A 3K7, Canada.

akardam@uwo.ca
dsteve47@uwo.ca
ewang56@uwo.ca
 jcodiner@uwo.ca
jingram9@uwo.ca

Abstract: Heart disease is a leading cause of death around the world, necessitating the development of software that can
predict the likelihood of a person having heart disease in the future by analyzing medical data. This prevention method
will ideally limit the number of heart disease patients. This application’s purpose is to tackle this problem using three
neural network models to predict a patient’s likelihood of getting heart disease from patient attributes in the Cleveland
database. Three neural network models were implemented: SVM, KNN, and RBF. The results of all three models were
optimized to achieve accuracies between 64-95%. A long-term goal is to improve the models’ accuracy to 90-95%.

1 INTRODUCTION

1.1 Motivation
Heart disease is one of the leading causes of morbidity
and mortality around the world, with numbers
increasing every year; the mortality rate is around 31%
annually. These statistics show that there is an
increasing need for software to warn an individual the
probability that he or she will develop heart disease in
the future, so immediate action can be taken to live a
healthier lifestyle. Complex algorithms and neural
networks can be utilized through machine learning and
artificial intelligence to enable self-learning from data
without requiring human intervention.

1.2 Related Works
In a similar investigation into the use of neural
networks for heart disease prediction, 6 ML classifiers
were used to validate the Cleveland dataset. It was
found that Chi-square and principal component
analysis with RF had the highest accuracy overall. It
was discussed that a major problem that frequents
machine learning is the high dimensionality of the
dataset and reducing this is key to higher accuracies,
especially through the use of feature selections
techniques [1].

1.3 Problem Definition

The goal of the Heart Disease Predictor is to apply
different neural networks to improve upon the model’s
accuracy in the studies outlined in the Related Works
and to create an interactive front-end for users to
access this information.

2 METHODOLOGY

2.1 Data
First, start with presenting the data. The dataset that
was analyzed is the Cleveland dataset obtained from
the UCI ML repository. The dataset contains 14
medical parameters that were sorted through.

2.2 Proposed Solutions and Evaluation
2.2.1 SVM
The SVM algorithm is essentially a method of creating
a hyperplane of best fit or decision boundary to sort
data into separate categories. In the case of the heart
disease predictor, a hyperplane of best fit divides
patient data into either the prediction that the patient
does or does not have heart disease [2].

Kernels are used to implement an SVM and each type
of kernel has unique parameters that need to be tuned.
Three kernels were used and optimal values for each
kernel’s parameters were found.

30

To find the optimal value of each parameter, the team
created a program to loop through the SVM algorithm
and output the accuracy for different parameter values.

2.2.2 KNN
KNN is a supervised machine learning algorithm that
depends on input data to produce an output based on
new unlearned data. This algorithm assumes that
similar data will exist in a closer proximity. The
calculation of similarity comes from calculating the
distance between two points. The distance between the
points as well as an index is then appended to an
ordered collection. It is then sorted by ascending order
of distances collected where the K values of the first
few data points are selected. These K values in
classification will return the mode [3].

Choosing the correct and most appropriate K value is
crucial to improving the accuracy. The K value is
modified until it reaches an optimized accuracy.
Eventually, there will be more noticeable errors in the
results, meaning that the K value has become too large.
Conversely, reducing the K value to 1 reduces stability
as the algorithm is observing a singular nearest
neighbor. For this classification problem, K is typically
an odd number to act as a tiebreaker [3].

2.2.3 RBF
The RBF Neural Network is a three-layer feedforward
neural network using clusters with a smooth gradient.
The first layer is an input layer, the second applies the
RBF, and the third is the output layer which is
determined by applying a weight (found using least
squares linear regression) to layer two. The
classification of an unknown point is determined by
first finding the RBF vectors of the point with respect
to their centroids (these centroids are found by
performing k-means). The next step is to then apply a
weight to each of these vectors and determine the
maximum value. Finally, the index of this maximum
value is then returned as the class that the unknown
point belongs to.

The model was optimized by refining the
hyperparameters beta, the speed of decay of the
gradient, and k, the number of clusters, for maximum
accuracy. The two equations considered for beta are
shown below [4]:

(1) (2)

Different values of k ranging from 0 to 250 clusters
were tested for each beta equation.

3 RESULTS AND DISCUSSION
The highest accuracy of each model is shown in Table
1 below.

Table 1 - Summary of Model Accuracy
Model Maximum Accuracy
SVM 88.5%
KNN 87%
RBF 89%

3.1 SVM
Many trials were completed by changing a parameter
for each kernel. The accuracy changes because it
affects the shape of the hyperplane. Figures 1 - 3 show
the results of using a program to test many parameter
values for each kernel. Table 2 summarizes the highest
accuracies for varying the parameters of each kernel.

Figure 1 - SVM Polynomial Kernel

Figure 2 - SVM Linear Kernel

Figure 3 - SVM RBF Kernel

Table 2 - SVM Best Parameters
Kernel Parameter Accuracy

Polynomial Degree = 9 0.7377
Linear C = 75 0.8852459
RBF Gamma = 1 0.590

The linear kernel with a C value from 60-80 resulted in
the most accurate predictions. This range is due to the
limited data as no data points lie within this range. A
linear kernel with a C value of 75 was used for the
Anvil application.

3.2 KNN
KNN is 64-95% accurate, showing the best result with
K=13 at 87% accuracy. The team experimented with

31

all the odd values from 1-19 to see the accuracy at a
large range of K values. As expected, there was some
variability of the accuracy with each K value, so an
approximate average accuracy value was recorded and
summarized in Table 3 below. Each K value was re-
run 10 times, and the high and low values were
recorded for each [4].

Table 3 - KNN RBF Kernel

Figure 4 - KNN RBF Kernel

There are several advantages to this algorithm: it is
easy to implement and simple since the user only
needs to tune parameters and does not need to build
the model from scratch. Although in this project it was
used for the purpose of classification, it is super
versatile and can be used for regression and search as
well. The main disadvantage is that it should not be the
chosen algorithm when predictions are required to be
made rapidly.

3.3 RBF
The model accuracies for the different parameters are
shown in Figure 5 and 6 below. A summary of the
maximum accuracies from each beta equation are
shown in Table 4. Based on this evaluation, the
optimal beta was determined to be Eq. 2 with a k of 35
clusters which was implemented in the final model.

Figure 5 – Accuracies for Eq. (1) Figure 6 - Accuracies for Eq. (2)

Table 4 - Maximum Accuracy for Each Beta

Beta k Maximum Accuracy
Eq. (1) 33 86.89%
Eq. (2) 35 89.02%

Some advantages of RBF neural networks include
higher accuracy and better efficiency. When dealing
with noisy input data, RBF networks outperform
conventional neural networks in terms of robustness
and tolerance. Disadvantages include sensitivity to
dimensionality and the possibility of not achieving the
best performance due to a local minimum problem.

4. CONCLUSIONS AND FUTURE WORK

In conclusion, with the three models: SVM, RBF, and
KNN, the highest accuracy in each model was
optimized at 88.5%, 89%, and 87%, respectively.
Since all the results were similar, and KNN fluctuated
with a degree of error, the three methods were all
presented on the website for the discretion of the user.

In the future, the group would like to optimize to
accuracies in the range of 90-100% and develop an app
that would allow medical professionals to use to
confirm their heart disease diagnostics. One major
challenge that the group faced was the large variability
in the results; a way to improve this would be to obtain
much more data, beyond the UCI heart disease dataset.

5. REFERENCES

[1] A. K. Gárate-Escamila, A. H. E. Hassani, and E.
Andrès, “Classification models for heart disease
prediction using feature selection and PCA,”
Informatics in Medicine Unlocked, 27-Apr-2020.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2
352914820300125. [Accessed: 25-Mar-2021].

[2] U. Malik, "Implementing SVM and Kernel SVM with
Python's Scikit-Learn", Stack Abuse. [Online].
Available: https://stackabuse.com/implementing-
svm-and-kernel-svm-with-pythons-scikit-learn/.
[Accessed: 05- Jan- 2021].

[3] O. Harrison, “Machine Learning Basics with the K-
Nearest Neighbors Algorithm,” Medium, Jul. 14,
2019. https://towardsdatascience.com/machine-
learning-basics-with-the-k-nearest-neighbors-
algorithm-6a6e71d01761. [Accessed: 12- Feb-
2021].

[4] T. Ahadi, "Most Effective Way To Implement Radial
Basis Function Neural Network for Classification
Problem", Towards Data Science, 2020. [Online].
Available: https://towardsdatascience.com/most-
effective-way-to-implement-radial-basis-function-
neural-network-for-classification-problem-
33c467803319. [Accessed: 09- Jan- 2021].

k Avg. Accuracy Test
Set (%)

Low Range
Value (%)

High Range Value
(%)

k=1 73 64 82
k=3 82 74 89
k=5 82 77 85
k=7 83 77 89
k=9 83 75 89
k=11 83 69 89
k=13 87 72 95
k=15 85 77 90
k=17 83 74 92
k=19 80 75 85

32

Art Intelligence: Unpaired Image
Translation using a CycleGAN

Danial Khan1, Ashvin Ananthan2, Jasdeep Singh3, Abad Ullah4, Hanna Dodd5

Western AI

Western University, London, Ontario N6A 3K7, Canada.

1 e-mail: Danial.Khan6312@gmail.com
2 e-mail: Aananth4@uwo.ca

3 e-mail: Jsingh.hba2022@ivey.ca
4 e-mail: Aawan26@uwo.ca
5 e-mail: hrdodd@gmail.com

Abstract: Creativity and artistic expression have always set humans apart in terms of what makes us
intelligent. As machines become more capable and intelligent, they can phase out tasks of increasing
complexity. The goal of this work is to demonstrate a machine learning model’s ability to recreate creative
tasks, using the Cycle Generative Adversarial Network (GAN) architecture to create artwork out of
photographs. Approaching image translation with a CycleGAN allows for the use of unpaired data while
training. Utilizing the Adam optimizer with custom hyper-parameters, and the least squares loss function, this
work is able to generate artwork to a similar degree as a human artist.

1. INTRODUCTION

1.1 Motivation

Generative adversarial networks can be implemented
into a wide variety of applications including, but not
limited to image-to-image translation and generating
realistic fakes of human faces [1]. The utilization of a
cycle-consistent GAN allows for the use of unpaired
image datasets. This unique feature of cyclic GANs
eliminates the need to develop large datasets that
contain paired images, which can be time exhaustive
[2]. Through this deep learning network, one can
transform an image by altering its stylistic elements
without any prior artistic experience. Generative
adversarial networks have a long list of real-world
applications. This includes the generation of image
datasets, realistic images, cartoon characters, and
various aspects of photograph enhancement [3].

1.2 Related Works

The 2017 paper by J.Y Zhu et. al focuses on unpaired
image translation using cycle-consistent generative
adversarial networks. They engineered an approach
that allowed one to translate a source image into a

target image without the need for paired examples [2].
The foundation of the model depends on the
adversarial loss and cycle consistency loss. It makes
use of two generators and two discriminators that are
consistently at battle with one another which brews the
adversarial relationship. As the generator generates
images for the discriminator from an input dataset, the
same image is then put through a secondary generator
that attempts to revert the image back to the original.
The cycle consistency loss is an important aspect of
the overall accuracy of the GAN. Their model handled
the change in colour and texture very well, but
geometric changes seem to be a challenge [2].

1.3 Problem Definition

The goal of this work is to create a cyclic GAN
framework that maps landscape and architectural
photographs to impressionist paintings similar to the
works of French painter, Paul Cezanne. Due to the
adversarial nature of the framework, standard ML
assessment metrics such a loss and accuracy are less
applicable. This is because the goal of each generator
is to increase the loss of its respective discriminator
vice-versa. GANs are a set of machine learning
frameworks in which two neural networks, a
generative (or ‘generator’) and a discriminative (or

33

‘discriminator’) network, compete in terms of the
distribution of data. The generator maps data from a
dataset to a data distribution of interest, while the
discriminator takes this mapped data and tries to
determine whether it coincides with the true data
distribution. The goal of the generator is to increase
the error rate of the discriminator, this makes the
framework adversarial and greatly improves model
accuracy [4]. A cycle GAN can be used to demonstrate
the ability of an ML model to recreate creative tasks
such as to create paintings from architectural
landscapes.

Figure 1: Components of a Cycle General Adversarial Network

2. METHODOLOGY

2.1 Data Collection

For image translation utilizing a CycleGAN two
distinct datasets are required. The first data set
contains data in the original format, in this case, real
landscape photographs. The second data set contains
our target format, Cezanne artwork. TensorFlow’s
built-in data set, Cezanne2Photo, was put into use
providing training and test data split into both
previously mentioned required sets.

Figure 2: Dataset Contents

2.2 Generator Network

The generators are structured following the U-net
structure described in the paper “U-Net: Convolutional

Networks for Biomedical Image Segmentation” [5]
where an image follows a series of down-sampling and
up-sampling resulting in a remapped image. The
generator down-samples the input image which
consists of applying a convolutional layer and a max-
pooling layer. Each down-sample causes the image
dimensions to change while increasing the channel
depth. Up-sampling utilizes convolution transpose
layers that build the image back up to the original
dimensions and channel depth.

2.3 Discriminator Network

The discriminators follow a fairly standard
convolutional neural network structure. Each
discriminator has a series of convolutions and pooling
layers followed by a flatten layer so that the images
can be run through a set of dense layers that output
whether the image is real or fake.

2.4 Optimizer

The Adam optimizer is utilized for the training of the
CycleGAN, this is to take advantage of the adaptive
moment estimation. The model was originally trained
using the following parameters for both the generators
and discriminators as outlined by the original
CycleGAN paper [2].

𝛼 = 0.0002 (1)
𝛽 = 0.5 (2)
Equation 1, 2: Initial Optimizer Hyper-Parameters

Through varying trials of training, the initial learning
rate, alpha, was kept constant to provide an equal
starting point for each network. The beta value
representing the first moment of gradient descent
decay was lowered to 0.3 for the generator networks,
this was after the observation that the discriminators
constantly outperformed the generators.

2.5 Loss Function

Two loss functions were considered when developing
both the generator and discriminator networks. The
first was binary cross-entropy, to fit the categorical
nature of the discriminator networks. The second was
the least squares GAN loss as outlined by Xudong
Mao, et al. in their 2016 paper titled “Least Squares
Generative Adversarial Networks.” [6].

34

Figure 3: Binary Cross Entropy Discriminator Loss

Figure 4: Least Squares Discriminator Loss

Figure 1 shows that with binary cross entropy the
discriminator loss quickly approaches 0 and maintains
a low value. Figure 2 shows that with least squares loss
the discriminator loss continues to oscillate.
Intuitively, binary cross entropy seems to be the better
option but because of the desired adversarial nature of
a CycleGAN, the oscillations in Figure 2 are more
appropriate as it shows that the multiple networks are
improving one another. These results determined that
least squares loss would be used moving forward.

(D(x) – 1) + (D G(z)) (3)
Equation 3: Discriminator Loss

(D G(z) – 1) (4)
Equation 4: Generator Loss

3. RESULTS AND DISCUSSION

As mentioned previously, standard metrics such as
accuracy and loss are not as applicable in the case of
art generation as it is difficult to quantitatively
determine whether an image passes as art. Figures 5, 6,
and 7 display some of the generated images.

Figures 5,6,7: Generated Artwork

Major points of improvement for this model and a
point of consideration for other CycleGAN
applications would be the resolution of the images.
With limited hardware resources obtaining high-
resolution images became quite difficult. Aside from
the resolution, the results are a strong indicator of AI’s
capability to automate more creative tasks such as art
generation.

4. CONCLUSIONS

Overall, our CycleGAN was successful in translating
landscape photographs into Cezanne paintings. We
achieved a desirable outcome for the loss of both
networks and can subjectively determine that the art
produced was acceptable. Future steps for this project
would be to attempt using datasets from other artists.
This would create a visual comparison of how our
model can mirror different art styles. By doing this, we
would have a qualitative metric for how well the
CycleGAN can produce art. We would be able to
compare results in many different styles, and
eventually may be able to create more unique and
abstract art.

REFERENCES

[1] J. Brownlee, “A Gentle Introduction to
Generative Adversarial Networks (GANs)”,
Machine Learning Mastery, July 2019.

[2] J.Y Zhu, T. Park, P. Isola, A.A Efros,
“Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks”,
ICCV, 2017.

[3] J. Brownlee, “18 Impressive Applications of
Generative Adversarial Networks (GANs)”,
Machine Learning Mastery, July 2019.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B.
Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial
networks,” Communications of the ACM, vol.
63, no. 11, pp. 139–144, 2020

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-
Net: Convolutional Networks for Biomedical
Image Segmentation,” University of Freiburg,
Freiburg, publication, 2015

[6] Xudong Mao, Qing Li, Haoran Xie, Raymond
Y.K. Lau, Zhen Wang, Stephen Paul Smolley;
Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2017

35

Forest Ecosystem Analysis

Sarah Nassar1, Adi Zingman2, Henry Tsui3, Mahad Rehan4, Travis Cossarini5

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada.

1 e-mail: 18sbn@queensu.ca

2 e-mail: 17az41l@queensu.ca
3 e-mail: henry.tsui@queensu.ca
4 e-mail: 19mmr1@queensu.ca

5 e-mail: travis.cossarini@queensu.ca

Abstract: With the growing occurrence of natural disasters, such as wildfires, and dwindling natural resources,
tracking the development of British Columbia’s forests is of increasing importance. The purpose of this project
is to identify and classify human disturbances, specifically tree cut blocks, with higher accuracy (greater than
90%) and consistency than human classification. Automatically identifying these geographic features provides a
great benefit in terms of efficiency to technicians in the forestry and resource industries because manual
classification is a time-intensive task. This furthers the progression in environmental technology and is a step
towards using Artificial Intelligence to bring change in preserving and protecting the environment. Currently, an
image segmentation algorithm using k-means clustering and a convolutional neural network model have been
implemented to label areas where trees have been cut down from aerial images, with plans for an intuitive user
interface.

1. INTRODUCTION

1.1 Motivation

Identifying disturbances is a key process in forest

 ecosystem dynamics [1]. They strongly influence the
structure, composition, and proper functioning of
forest ecosystems [2]. They also determine the spatial
and temporal patterns of forested landscapes [3].
Furthermore, disturbances are relevant factors in the
management of ecosystems for functions, goods, and
services [4]. These disturbances need to be found and
classified to better understand the forest ecosystems.
Normally these disturbances are manually classified
by humans, but this solution is not optimal because it
can be labour-and time-intensive. The purpose of the
forest ecosystem analysis software is to be able to

identify and classify tree cut blocks. The project aims
to use object detection and image segmentation to
create an algorithm that will classify these
disturbances with higher accuracy and consistency
than human classification.

1.2 Related Works

While the monitoring of forest resources is still in its
infancy as an application of data science and machine
learning, there have been applications of it in some
studies

S. states. In the peer-reviewed article, Satellite
Inventory of Minnesota Forest Resources, the team
was able to achieve a classification accuracy of 75%
in classifying the amount of forested area across 6
forest classes [5].

This was done through a mix of primary sampling unit
(PSU) sampling and disturbance classification using
two-phase, stratified sampling. While this application
is similar to the one discussed in this paper, the
execution does not include any traditional machine
vision clustering techniques.

36

https://www.zotero.org/google-docs/?QmzT58

1.3 Problem Definition

The client uses aerial images taken from planes and
satellites to conduct analyses of natural areas to guide
prediction. They face the issue of having to manually
analyze and identify human disturbances. This process
is quite tedious and expensive. To solve this
monotonous task, the objective of this project is to
identify and classify tree cut blocks through the use of
computer vision. Thus, the process of identifying the
traits of a natural area would be automated and would
yield a higher accuracy and consistency compared to
human classification. Ideally the model must yield
results that are considered accurate without the need
for a human to verify the outcome.

2. METHODOLOGY

The client provided the team with aerial images in the
MrSID file format and labels in the TIFF format. The
aerial images were around 100 megabytes (MBs) each.
The Python library used for reading the raster images
is the Geospatial Data Abstraction Library (GDAL).

The first solution is an unsupervised one using k-
means clustering in the Open Source Computer Vision
(OpenCV) library. K-means clustering tries to group
similar data points into clusters. The images were
converted to grayscale for reduced memory
consumption. The algorithm worked on a computer
with at least 16 gigabytes (GBs) of memory. The
required output cluster was cleaned using Gaussian
filtering followed by Otsu’s thresholding. Figure 1
shows an input image, its labels, and the k-means
clustering output.

The other solution is using a supervised method,
namely a convolutional neural network (CNN). The
model is U-NET with the VGG11 Encoder. The
images were resized and split into tiles for reduced
memory consumption. The algorithm worked on
Google Colab’s graphics processing unit (GPU) with

less than 13 GBs of memory. 80 percent of the tiles
were used for training and 20 percent were used for
testing, and the tiles were shuffled to be randomly
selected. Figure 2 shows a sample tile with its labels
and model output. The tiles would have to be merged
and resized again once the algorithm is finished.

To evaluate the proposed solutions, a confusion matrix
from the Python library, scikit-learn, was used. The
output was compared to the client’s labels to

determine if overlapping pixels had the same label
(i.e., black/positive or white/negative). Figure 3 shows
the confusion matrix framework for this project.

Figure 2: A sample tile (left), its labels (middle), and the predicted labels from the CNN model (right).

Figure 1: An aerial image (left), its labels (middle), and the corresponding cleaned cluster (right).

37

Figure 3: The defined confusion matrix for this project.

3. RESULTS AND DISCUSSION

The accuracy, precision, recall, and F-score were
calculated for the k-means clustering algorithm and
the testing component of the CNN model using the
values from the criteria matrices. The results are
shown in Table 1.

Both solutions yielded high metrics, but the CNN
performed better. For k-means clustering, the right
cluster has to be manually identified from all the
output clusters, the number of clusters and iterations
required may vary, and there is no way to ensure
consistent results because it is an unsupervised
method. For the CNN model, there is training
involved, which means that more consistent results are
possible, and there is less human interaction so the
process can be more automatic and integrated into a
simpler user interface.

Model K-Means CNN
Accuracy 96% 98%
Precision 85% 84%

Recall 71% 96%
F-Score 77% 89%

Table 1: Results of the k-means clustering algorithm after de-noising
and the CNN testing subset using the values from the confusion
matrices.

4. CONCLUSIONS AND FUTURE WORK

The work the team has completed so far is excellent,
though it will need to be formalized in order to be
delivered to the client. The accuracy scores listed
above prove the soundness of this application, though
these scores will need to be validated across a wider
set of images moving forward. The CNN system will
be implemented due to increased accuracy and
removal of the need for user input, though memory
constraints are an important issue to consider.

Usability is also an important goal for the client, as
users need not be experienced in programming or
machine learning. Accordingly, the development of a
basic user interface is also crucial for the success of
the system.

REFERENCES

Acknowledgment: This work could not have been done
without the assistance of a member of the analytics
team at the Queen’s University Centre for Advanced
Computing (CAC).

[1] C.D. Oliver, B.C. Larson, Forest Stand
Dynamics, Wiley, New York (1996), 520 pp

[2] J.F. Franklin, T.A. Spies, R.V. Pelt, A.B.
Carey, D.A. Thornburgh, D.R. Berg, D.B.
Lindenmayer, M.E. Harmon, W.S. Keeton,
D.C. Shaw, K. Bible, J. Chen, Disturbances
and structural development of natural forest
ecosystems with silvicultural implications,
using Douglas-fir forests as an example, For.
Ecol. Manage., 155 (2002), pp. 399-423

[3] R.T.T. Forman, Land Mosaics: The Ecology
of Landscapes and Regions, Cambridge
University Press (1995), 656 pp

[4] K.J. Puettmann, K.D. Coates, C. Messier, A
Critique of Silviculture. Managing for
Complexity Island Press Washington, DC
(2009), 206 pp

[5] M. Bauer et al., “Satellite Inventory of
Minnesota Forest Resources,” p. 12.

38

Financial Statement Analysis using
Unsupervised and Supervised Learning

George Trieu1, Jackson Kehoe2, Alexia Tecsa3, Raisa Sayed4, Nicolas Wills5

QMIND – Queen’s AI Hub

Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: g.trieu@queensu.ca
2 e-mail: 17jpk3@queensu.ca

3 e-mail: alexia.tecsa@queensu.ca
4 e-mail: raisa.sayed@queensu.ca

5 e-mail: 17nvw@queensu.ca

Abstract: With the growing number of self-investors in the financial markets today, there must be more tools to
help investors make informed decisions. The goal of this project is to group similar companies together and
perform basic peer analysis and comparison on these companies. This is achieved by using various clustering
methods to group companies together, and finally, perform analysis on these clusters through supervised
learning and Shapley values. The attributes of each company selected to perform clustering were important
accounting ratios to determining a company’s success - both financially and on the stock market. The final
model uses affinity propagation clustering and produces thirteen final clusters.

1. INTRODUCTION

1.1 Motivation

In 2020, more than 2.3 million Canadians opened
investing accounts [1]. This trend was found all
throughout North America, as the lead personal
investing platform, Robinhood, alone saw 13 million
new traders in the past year [2]. As a result of these
trends, there has been a growing concern as to the
responsibility of non-professional traders, and the lack
of knowledge behind their investment decisions. This
has resulted in many Canadians being placed in
positions of high financial risk. As interest in stock
investments continues to grow among the public, it is
important to provide stock analysis tools to create
more informed decisions, thus placing the public at
less financial risk.

1.2 Related Works

There have been numerous attempts to build
comparative financial analysis tools for equities in the

stock market using machine learning techniques. In
2015, the Marbaselios College of Engineering
developed a clustering and regression model for stock
prediction [3]. The research developed demonstrated
that partitioning-based clustering performed better than
density-based clustering and hierarchical-based
clustering. Another similar project was developed by
the Intel Institute of Science [4]. In the project
developed by Intel, hierarchical agglomerative and
recursive k-means clustering was effectively used to
predict the short-term stock price movements after the
release of financial reports.

1.3 Problem Definition

The problem tackled in this project is to develop a
method to compare and group different publicly traded
companies. This was achieved by employing various
clustering models to separate and classify companies;
as well as by determining the key financial metrics in
each grouping.

2. METHODOLOGY

39

This project was completed in three phases: data
preparation, clustering technique experimentation, and
supervised learning.

2.1 Data Collection and Preparation

A dataset from kaggle.com containing 200+ Indicators
of US Stocks from 2014-2018 [5], was used for this
project. This dataset was then prepared for use by
eliminating blank “Not a Number” (NaN) value rows
and narrowing down the number of attributes
contained within the dataset. The accounting ratios
(attributes) used were those that investors would most
commonly use to assess the financial performance of
any company as this would allow us to better analyze
firms across industries. These would include earnings
per share and the price-earnings ratio which most
investors are typically concerned with. The data was
also normalized prior to clustering.

2.2 Clustering Models

Once the dataset was cleansed, various clustering
techniques were applied to it such as k-means,
DBSCAN, spectral, agglomerative, Gaussian mixture,
and affinity propagation. Each clustering technique
was then compared to one another through the quality
of the clusters generated. For example, DBSCAN
yielded most of the companies forming in one singular
cluster, which is not useful for the purposes of this
project.

2.3 Supervised Learning

Once the most effective clustering technique was
selected, the Random Forest supervised learning was
trained using the cluster number as the target attribute,
to learn more about the feature importances of the
clusters. Shapley values were also used to further
explain the significance behind each attribute in the
model.

3. RESULTS AND DISCUSSION

3.1 Clustering Attributes

The attributes (accounts/ratios) of the dataset were
truncated to only keep the ones that were useful. The
final list of accounting ratios used for clustering is
shown in Table 1.

Table 1: Accounting Ratios used for clustering the data.

Net Cash Flow/
Change in Cash

Average Payables Average
Receivables

Current Ratio SG&A to Revenue Days of Payables
Outstanding

Days of Inventory
Outstanding

EBIT per Revenue Debt to Assets

Debt to Equity Payout Ratio Return on Equity

R&D to Revenue PE Ratio Dividend Yield

After cleaning the dataset and isolating for the above
attributes, 3568 companies remained for use in the
clustering process.

3.2 Clustering Methods

The clustering methods experimented with were k-
means, DBSCAN, agglomerative, spectral, Gaussian
mixture and affinity propagation. Of the following
techniques only Gaussian mixture and affinity
propagation yielded distinct clusters between the
companies due to the large variation within the
normalized data. The unsuccessful techniques yielded
most of the companies forming in the same cluster or
the marking of most data as noise.
The affinity propagation clustering method works by
comparing the different data points within the data to
each other using matrices. When two points attributes
are similar enough, they form a criterion matrix for the
newly formed cluster which other data points must
satisfy to join this cluster. This method eliminates the
need to specify the number of clusters and different
numerical metrics.
The affinity propagation clustering formed 46 clusters
and had a silhouette coefficient score of 0.367. Some
of the clusters formed with limited data points which
indicated noise within the data. These clusters were
filtered out and resulted in 13 distinct clusters.

Figure 1: Results from affinity propagation clustering. The cluster
number is on the left and number of companies in each cluster is on the
right.

40

3.3 Random Forest and Shapley Values Analysis

After the formation of the clusters, they were analyzed
using a combination of random forest and Shapley
values to identify the dominant features. The random
forest gave a very high accuracy score of 94.74% in
identifying which cluster each company belonged to.
The most influential features in the formation of
clusters were debt to assets, current ratio, and debt to
equity.

Figure 2: Contribution of features to the formation of different clusters.

Shapley values incorporate the model produced by the
Random Forest algorithm to measure the contribution
of a feature in each cluster individually. This is done
using coalition game theory, by measuring the
importance of each attribute to the predicted value [6].
An example can be seen in cluster 5, where most
pharmaceutical and research companies were grouped.

Figure 3: Sample results for cluster 5.

4. CONCLUSIONS AND FUTURE WORK

Without time constraints, further expansions to the
project can be considered.
The first consideration would involve examining the
companies within each cluster at a far more granular
level to get a better understanding of their financial
structures and the industries they operate in. This
would allow the algorithm to further refine each
industry cluster and identify closer similarities
between companies within the same cluster.
The second application would be the analysis of the
relative importance and impact of qualitative financial
information on investment decisions. This analysis
relies on non-quantifiable information such as
management expertise, industry cycles, the strength of
research and development, and labor relations [6].
Natural language processing can be applied to analyze
textual data taken from management letters, financial
statement notes, and other disclosed company
announcements.

REFERENCES

[1] Global News, "Canadians opened 2.3 million DIY investing

accounts in 2020. Should you?," 11 February 2021.
[Online]. Available:
https://globalnews.ca/news/7631776/diy-investing-canada-
iiroc/.

[2] CNBC, "How Robinhood and Covid opened the floodgates
for 13 million amateur stock traders," 7 October 2020.
[Online]. Available:
https://www.cnbc.com/2020/10/07/how-robinhood-and-
covid-introduced-millions-to-the-stock-market.html.

[3] T. M. B.S. Bini, "Clustering and Regression Techniques for
Stock Prediction," Procedia Technology, vol. 24, pp. 1248-
1255, 2016.

[4] N. G. B. S. M.S. Babu, "Clustering Approach to Stock
Market Prediction," Int. J. Advanced Networking and
Applications, vol. 3, no. 4, pp. 1281-1291, 2012.

[5] N. Carbone, "200+ Financial Indicators of US stocks
(2014-2018)," 2020. [Online]. Available:
https://www.kaggle.com/cnic92/200-financial-indicators-
of-us-stocks-20142018.

[6] G. B. G. L. Huy Quan Vu, Data Mining Applications with
R, 2014.

[7] T. Smith, "Qualitative Analysis," 7 March 2021. [Online].
Available:
https://www.investopedia.com/terms/q/qualitativeanalysis.a
sp.

41

Forecasting Hospital Bed Occupancy
Aidan Turnbull1, Jake Egan2, Courtney Orcutt3, Jacob Seiler4, Mackenzie Sharp5

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: aidan.turnbull@queensu.ca

2 e-mail: jake.egan@queensu.ca
3 e-mail: 18cro@queensu.ca

4 e-mail: jacob.seiler@queensu.ca
5 e-mail: 17mcs16@queensu.ca

Abstract: To combat rising health care expenses and wait times across Canada, our team in conjunction with
Kingston Health Science Center developed a time series forecasting model to predict hospital bed occupancy.
Using Facebook’s Prophet library as a framework, the model was trained and tested with Kingston General
Hospital occupancy data and turned into a web application for easy administrative use. Forecasting 365 days
in advance the model displayed a mean absolute percentage error of 10.34 and a root mean square error of
11.31. Overall, the model effectively predicted bed occupancy and can easily be implemented by the Kingston
Health Science Center to help prepare for surges as well as make their schedule more efficient.

1. INTRODUCTION

1.1 Motivation

Canada has a hospital bed problem. The country ranks
34th in available hospital beds [1] and has a funding
model that financially punishes hospitals for operating
over capacity. These factors contribute to high patient
wait times [2], overworked nurses [3], and
underfunded hospitals. Many of these issues could be
mitigated if hospital administrators had a better
understanding of occupancy trends. Knowing how
many patients to expect would allow the hospitals to
move patients to less busy facilities, schedule an
appropriate number of nurses, and save the hospitals
thousands of dollars per bed [4]. Our goal is to create a
time series forecasting model that can predict hospital
bed occupancy accurately and easily be implemented
by health care administrators.

1.2 Related Works

This program is a continuation of a QMIND project in
2020 with the same objective. That team used an
autoregressive integrated moving average (ARIMA)
model and was able to achieve extremely accurate
results. Unfortunately, their model required being
retrained daily which inhibited its ability for long term
predictions.

1.3 Problem Definition

To maximize capability, hospitals need to know how
many patients to accept each day. This information
will allow them to schedule elective surgeries
efficiently, know how many employees are needed,
and prepare for expected surges. By expanding
forecasting models to predict long term bed occupancy
hospitals will have useful information to help optimize
their operations.

42

Figure 1. Comparison of predicted (Blue) vs. actual (Orange) bed occupancy at Kingston General Hospital
from April 21st, 2014 to March 31st, 2018.

2. METHODOLOGY

The Kingston Health Science Center provided
occupancy data from Kingston General Hospital
between April 2014 and March 2019. Each
observation included the date, admissions, discharges,
day of the week, as well as if Queen’s University was
in session or on holiday.

This data set trained a time series forecasting model
built on python with Facebook’s Prophet library. The
Prophet neural network was developed by Facebook to
predict groups users would likely join based off their
page likes and expressed interests. We chose Prophet
because of its forecasting proficiency and it seamlessly
integrating with our web application. The algorithm
trained multiple times using different combinations of
variables to find the most accurate forecasts.

Accuracy was calculated by comparing the predicated
and actual occupancy over the course of 365 days.

Finally, a user-friendly web application was built that
allows the model to be retrained on new data as well as
forecast occupancy data for any specified time frame.

3. RESULTS AND DISCUSSION

Table 1. Statistical results from 365-day forecast using
Prophet model.

 Mean Absolute
Percentage Error

Root Mean
Square Error

365 Day
Forecast 10.34 11.31

Figure 2. Comparison of predicted (Blue) vs. actual
(Orange) bed occupancy at Kingston General Hospital
from January 1st, 2019 to March 31st, 2019.

The 365-day forecast had a mean absolute percentage
error of 10.34 and a root mean square error of 11.31
(Table 1).

The statistical results suggest the model can accurately
forecast bed occupancy 365 days in advance. The four-
year forecast (Figure 1) shows the model generally
follows monthly trends including a sharp decrease
during the December holidays and a gradual increase
after Canada Day. Furthermore, the smaller three-
month forecast (Figure 2) demonstrates the model
takes weekly trends into account with Sundays usually
being the least busy day. These figures also display
limitations to the model, particularly that it always
predicts a seemingly average number of patients. The
four-year forecast shows an occupancy spike in April

43

2016 which the model failed to detect. This is partially
due to the nature of hospitals with accidents occurring
randomly causing a surge of patients, however, the
model does not have access to what each bed is being
used for which could give insight into why those
spikes occurred and if they could have been predicted.
Keeping these limitations in mind the model is not
accurate enough to replace human judgement and
automate the hospital’s schedules, however, is
effective enough to be a useful tool to augment
administrator’s expertise and should help optimize
operations.

4. CONCLUSIONS AND FUTURE WORK

This project attempted to create a time series
forecasting model that could accurately predict
hospital bed occupancy. Using Facebook’s Prophet
library, the team built and trained a model that could
forecast bed usage 365 days into the future with a
mean absolute percentage error of 10.34. Although the
model had difficulty anticipating large surges it was
effective at predicting monthly and holiday trends.
Ultimately, the model achieves its goal of effectively
predicting hospital bed occupancy.

Future forecasting efforts should research occupancy
of different departments within the hospital. Knowing
which beds are being used could provide the model
valuable information to better predict surges and
generally improve the model’s accuracy.

REFERENCES

[1] OECD, “Hospital Beds (Indicator),”
Organization for Economic Co-operation and
Development, Paris, France, 2019. [Online].
Available:
https://data.oecd.org/healtheqt/hospital-
beds.htm
[Accessed: Mar. 24, 2021].

[2] A. Hildebrandt, “Hospital ER times reveal
some 'disturbing' waits,” CBC, Sep. 18, 2014.
[Online]. Available:
https://www.cbc.ca/news/health/hospital-er-
times-reveal-some-disturbing-waits-1.2767867.
[Accessed: Mar. 24, 2021].

[3] S. Fitzgibbon, “Work Stress Among Nurses in
Ontario,” Queen’s University Industrial
Relations Centre, vol. 2006-05, pp. 1-30, June
2006.

[4] S. Lunn, “Seniors in hospital beds costly for
health system,” CBC, Dec. 1, 2011. [Online].
Available:
https://www.cbc.ca/news/health/seniors-in-
hospital-beds-costly-for-health-system-
1.1069802. [Accessed: Mar. 24, 2021].

44

https://data.oecd.org/healtheqt/hospital-beds.htm
https://data.oecd.org/healtheqt/hospital-beds.htm
https://www.cbc.ca/news/health/hospital-er-times-reveal-some-disturbing-waits-1.2767867
https://www.cbc.ca/news/health/hospital-er-times-reveal-some-disturbing-waits-1.2767867
https://www.cbc.ca/news/health/seniors-in-hospital-beds-costly-for-health-system-1.1069802
https://www.cbc.ca/news/health/seniors-in-hospital-beds-costly-for-health-system-1.1069802
https://www.cbc.ca/news/health/seniors-in-hospital-beds-costly-for-health-system-1.1069802

Happy Recommender

Eric Yuyitung1, Kevin Subagaran2, James McCarron3

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: eric.yuyitung@queensu.ca

2 e-mail: 17jmp5@queensu.ca
3 e-mail: 19kks1@queensu.ca

Abstract: In our modern age, the extent of data collection is ever increasing. Being able to leverage this
information has led to great improvements in overall user experience. An obvious example would be the
“customers also bought” feature on Amazon. This is a recommender system and helps tailor the experience to
the user, promoting engagement and convenience. Unfortunately, high quality recommender models are
cumbersome to implement. To solve this, we have created a library called Happy Recommender which
streamlines the implementation of recommender models. The project is built on Tensorflow and implements a
state-of-the-art model in a matter of lines of code. This project serves as a high-quality foundation and from
there will be developed further with client Vennify Inc., to improve performance, usability, and value, to help
the project contribute to, and create impact within, the AI community.

1. INTRODUCTION

1.1 Motivation

Looking at the modern digital world, many products
and services leverage abundant data to tailor the user
experience (UX). A 2013 article titled “The
Importance of Personalization in E-Business
Environments” outlines the advantage of data driven
UX optimization and it covers successful examples
such as, Facebook’s “people you may know”.

Under the hood, these optimizations are driven by
recommender systems, but due to performance
constraints in their typically web-based applications,
these have formerly been simple user segmentation
models and shallow pattern matching or rule-based
techniques [1]. However, recent advances in deep
learning have led to deep recommender systems,
generating state-of-the-art results, more effectively
incorporating contextual information [2].

Given the importance of these systems in modern UX,
we wanted to implement a deep recommender system
for a new social media app Kaku and were met with
the complex task of implementation. So, the scope was

altered to create a library to streamline the
implementation of state-of-the-art recommendation
systems.

1.2 Related Works

Upon initial research into methods and tools to use to
develop this tool, Python and Tensorflow were
selected as the foundation. Shortly into development,
Google released the Tensorflow Recommenders
library which initially seemed to encompass the project
goals but was largely a convenience library, still
requiring much of Tensorflow’s boilerplate code to use
effectively [3].

Further into development we came across a similar
tool, Tensorrec. It accomplished a very similar project
goal but was built on an old Tensorflow methodology
(directly manipulating graphs) and unfortunately, has
since also been deprecated [4]. Inspiration for the
user’s interaction with library was drawn from this
project, in terms of what methods make sense to
expose.

1.3 Problem Definition

45

The power of recommender systems is made apparent
by their essentiality in modern UX and yet, the few
existing tools, are too complicated for amateurs or lack
streamlined implementation.

The team aimed to create an open-sourced library
which facilitated usage of modern recommender
models across a wide range of data while still being
simple to use. We focused on implementing deep
collaborative-filtering as it is a powerful and intuitive
methodology which is applicable to a wide range of
dataset tasks. This was then supported by the creation
of high-quality documentation to further increase the
accessibility of the library.

2. METHODOLOGY
2.1 Solution

It was decided the most robust implementation would
be a wrapper on top of Tensorflow Recommenders. As
a google supported project, it would be a reliable
dependency and offers the most robust functionality
despite its relative difficulty to use.

To simplify usage, Happy Recommender uses
reasonable default parameters and object-oriented
programming (OOP) to minimize the boilerplate code
required from the user. When Happy Recommender is
initialized with a dataset, all data processing and
splitting, model definition and compiling is handled,
and a compiled model is returned to the user. From
there a user need only specify the quantity of training
epochs, then the trained model is ready for evaluation
or implementation. Should an advanced user want
greater control over the model, many of these
parameters are exposed as optional function inputs.

Figure 1: Example of code required for usage

2.2 Design Process

The design process began with a wide breadth of
research into models and datasets to ensure that the
selected model can gracefully handle as many datasets
as possible. A two-tower deep embedding model was
selected, (as seen in Figure 2) as it is applicable across
many modern datasets and is a powerful state-of-the-
art deep recommendation model [5]. From this model
we built out the required infrastructure, namely data
preprocessing, model training, model evaluation, and
recommendation generation.

Figure 2: Model structure

2.3 Evaluation

The project was to be evaluated on three metrics to
determine success. First, the project’s performance
was evaluated on the benchmark dataset, Movielens
100K. The performance metric used was Top-K
Categorical Accuracy, which computes, as a
percentage, how often targets are in the top K
recommendations. Scores were computed for K values
of 10, 50, and 100.
Dataset K=10 K=50 K=100
Movielens 100K 1.10% 13.06% 27.56%

Table 1: Top-K Categorical Accuracy of model

Next, it evaluated on usability, which we defined as
ease of use, clarity, and versatility of the library. A
survey was conducted amongst our peers by providing
them with only the library and it’s documentation.

Finally the project’s impact and value was to be
evaluated by the quantity of users the library would
have at time of publishing.

46

3. RESULTS AND DISCUSSION

For performance, the Top-K Categorical Accuracies
achieved by the model on the Movielens 100K Dataset
are summarized in Table 1. This is on average 233%
better than that of a comparable non-deep
recommendation model from early in development as
seen in Table 2.

Dataset K=10 K=50 K=100
Movielens 100K 0.30% 7.09% 18.39%

Table 2:Top-K Categorical Accuracy of non-deep model

For usability, the average ratings for ease of use,
clarity and versatility were 8.7, 8.4 and 7.3,
respectively. Valuable feedback was provided by the
survey participants on regions in which to focus
improvements going forwards.

For impact and value, due to setbacks, we were unable
to publish the library in advance of publishing.
However, we received very positive feedback from the
survey participants, which suggests that this library
will create impact and be a valuable tool moving
forwards.

4. CONCLUSIONS AND FUTURE WORK

This project brought to light the ubiquity of
recommendation systems throughout the modern UX
will serve as a powerful tool to increase their
accessibility.

Moving forward, to improve the performance of the
library we would implement processing of more
contextual information which would produce more
valuable insights. Additionally, moving away from the
current embedding-based model could improve model
performance on unseen data, improving generalization.
Also we hope to broaden support of the library to
graph datasets, which would encompass many social
network and relational recommendation problems.

Secondly, further work is required on improving
usability. Incorporating feedback from the survey
participants, creating more detailed and example
driven documentation would improve learning
efficacy. Additionally, broadening functionality in

evaluation and exposing more parameters would
improve clarity and versatility.

Finally, the library needs to be prepped for publishing
to PyPI, which will predominantly be tasks like code
cleanup and the addition of a testing framework.

In summary, we put together a library which
implements a powerful recommendation model on
your dataset in a matter of lines. Our work opens the
door for all amateur developers to tailor their user
experiences and gives them the tools to create impact
with their work.

REFERENCES

[1] L. Gong, ‘Can web-based recommendation
systems afford deep models: a context-based
approach for efficient model-based reasoning’, in
Proceedings of the 13th international World Wide
Web conference on Alternate track papers &
posters, New York, NY, USA, May 2004, pp. 89–
93, doi: 10.1145/1013367.1013383.

[2] S. Zhang, L. Yao, A. Sun, and Y. Tay, ‘Deep
Learning based Recommender System: A Survey
and New Perspectives’, ACM Comput. Surv., vol.
52, no. 1, pp. 1–38, Feb. 2019, doi:
10.1145/3285029.

[3] ‘TensorFlow Recommenders’.
https://www.tensorflow.org/recommenders
(accessed Mar. 18, 2021).

[4] J. Kirk, ‘Tensorrec’, GitHub.
https://github.com/jfkirk/tensorrec (accessed Mar.
18, 2021).

[5] X. Yi et al., ‘Sampling-bias-corrected neural
modeling for large corpus item recommendations’,
in Proceedings of the 13th ACM Conference on
Recommender Systems, Copenhagen Denmark,
Sep. 2019, pp. 269–277, doi:
10.1145/3298689.3346996.

47

Hospital Scheduling

Ariana Bakhtyari1, Ben Graham2, Nayana Menon3, Anshul Pattoo4

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada.

1 e-mail: 17ab70@queensu.ca
2 e-mail: 19bng@queensu.ca

3 e-mail: 17nm51@queensu.ca
4 e-mail: anshul.pattoo@queensu.ca

Abstract: Our goal was to use a decision tree algorithm to extract specific rules from a given hospital staff
schedule. With scheduling being costly and time consuming, our algorithm extracts specific decision rules to
ease the process. Hospital scheduling is a crucial aspect of daily planning. A company has developed a program
that will take a set of rules from a client and create a schedule, but they were unable to devise a method to
automatically extract the rules from a given schedule. The company typically spends hours communicating back
and forth with clients, costing time and money. Their biggest challenge is for the client to remember all the
workplace rules, vacations, and personal conflicts for their employees. The program we created solves this by
extracting key rules for input. We designed a Gini impurity based decision tree to predict what job any given
employee would perform, based on historical scheduling data. We then developed an algorithm to analyze the
decision trees output, and extract trends based on the tree’s decision criteria at each node. Finally, the results of
the analysis are returned in a way that is easily interpreted by a human. Our model performed with an accuracy
of 81%. This will provide the scheduling algorithm with accurate and reliable rules, helping ease the process in
predicting future schedules for the next respective time period.

1. INTRODUCTION

1.1 Motivation

In recent years, the importance of accurate and
effective hospital schedules has become evident.
Developing these schedules for hospital employees is
exhaustive and complex and directly affects hospital
organizational structure [1]. Consistency must be
maintained within all divisions of the hospital to
ensure smooth operations. This illustrates the
importance of a scheduling system that is able to do its
work effectively and far in advance to meet all the
necessary requirements for employees and hospital
operations [1].

Additionally, hospital schedules have a significant
impact on patient wait times since healthcare capacity
must match patient demand [2]. Wait times continue to
increase due to imbalances in the supply and demand
chains of hospitals, and this burdens patients and

reduces medical care quality [3]. Software has been
developed to create the required schedule, but it is not
yet possible to extract the rules required to create it.
This project aims to simplify the scheduling process
through the use of a rule extraction algorithm. Machine
learning techniques were used to develop an algorithm
that could extract key rules for employee schedules
from previous schedule data. This will allow for
simplified input into a scheduling system and ease the
scheduling process.

1.2 Related Works

Rule extraction is a common machine learning
process, but it is mostly applied to other models. One
such example is research that has been done to
linguistically interpret rules extracted from numerical
data for pattern classification and use in genetic
modelling [4]. This research, though in a different
field, determined that simple rules can be found
through classification approaches. After determining a

48

target rule, a classification algorithm was used for
extraction of data [4]. Research has also been done on
the ability of machine learning networks to conduct
rule extraction, as a more complex form of
classification [5]. By developing specific weights for
layers of the network, a system can be established to
obtain a higher accuracy output [5]. These rule
extraction methods and the research associated with
them were the main basis for our design process.

1.3 Problem Definition

This project aims to simplify the issue of outdated
programs and inefficient scheduling systems by
developing a classification algorithm to perform rule
extraction for efficient scheduling practices. Being less
complex and work intensive than methods like
memetic algorithms and statistical analysis, this
methodology will allow for an easily adaptable
program to be created. This will allow changes to be
made as hospital operations evolve with low effort,
and as machine learning libraries and tools are created.
The resultant program will extract rules from
employee input that involve their requirements for a
schedule using a decision tree model. These rules can
then be coded and input into a schedule using a
separate program.

2. METHODOLOGY

2.1 Dataset Manipulations

Start
Date

End
Date

Job Member Worked
Hours

2021-
01-01

2021-
01-01

Tester
A

Joe 8

2021-
01-01

2021-
01-01

Tester
B

Bart 8

2021-
01-02

2021-
01-02

Tester
A

Zeta 8

2021-
01-02

2021-
01-02

Tester
B

Hathy 8

… … … … …
Table 1: Initial data set.

A sample of the initial data set proved from the
company can be seen in Table 1. The data set is an
example of a typical hospital schedule and provides

the start and end dates of each shift, the job which the
employee worked on that shift, the name of the
employee, and the length of the shift. Since this base
dataset was limited and only included five attributes
and less than 200 entries, data augmentation was
performed on the set. This process involved first
replacing all date attributes with an integer
representing the day of week, since this provides more
insight into scheduling trends than the calendar date
itself. Second, categorical data such as name and job
were encoded with a numeric placeholder to allow the
model to use these attributes. Finally, the dataset was
interpolated and additional attributes including number
of staff taking time off, and cumulative number of
shifts worked were added.

2.2 Model Development

The proposed solution uses a decision tree classifier
model as it allows for the model to be easily
interpreted by analysing the criteria on which the tree
splits the data at each node. The tree was trained
separately to classify data set entities based on a
variety of different attributes used as labels for the
classification, including Day of the Week, Member,
and Job Worked. It was found that the model
performed with different accuracies in each case, and
the results are summarized in Table 2.

Target Attribute Accuracy

Day of the week 40%

Member 62%

Job Worked 81%

Table 2: Model accuracy with different data set
attributes used as labels.

Using Job Worked as the label in the classification
model was selected as it provides the highest accuracy.
Running the trained decision tree on the augmented
data set provided the text representation seen in Figure
1, from which trends and rules were extracted.

3. RESULTS AND DISCUSSION

Our final model performed well, with an accuracy of
81%. We were tasked to produce decision rules for a
set of eight sample staff members — Joe, Bart, Zeta,
Hathy, Yolanda, Beiko, Bob, and Sally — and two
sample jobs — Tester A and Tester B. A few insights

49

from our decision tree for this particular example are
as follows:

1. Joe, Bart, and Zeta tend to work as Tester A.
2. Hathy, Yolanda, Beiko, Bob, and Sally tend to

work as Tester B.
3. Yolanda, Beiko, Bob, and Sally tend to work as

Tester A.

Figure 1 shows a visual representation of the pertinent
decision tree produced.

Figure 1: Outputted Decision Tree.

Over the course of the project, the team discovered
that the dataset was best suited for a prediction
attribute of Job Worked by a particular member (i.e.
Tester A or Tester B). Our work could be further
improved by converting the decision tree into an
output that others would understand. It could also be
improved with a larger dataset, both in terms of
number of records and attributes. With a larger dataset,
we can conduct prediction on several attributes and
produce a decision tree which accounts for a variety of
factors that might be unbeknownst to model designers.

The confusion matrix for the model’s performance is
seen in Figure 2.

Figure 2: Confusion Matrix.

The confusion matrix indicates that for both output
labels, our model performed well. The model was not
more predictive of one particular label over another.

4. CONCLUSIONS AND FUTURE WORK

Thus far the team has been able to create a decision
tree algorithm model with 81% accuracy. Data
preparation, proper attribute creation, and using the
Gini-impurity test allowed for the model to extract
specific rules from the given schedule.

Many improvements can be made to the model. One
modification is to allow the model to handle larger
datasets with more variables and still output the same
level of accuracy. Furthermore, creating a general code
to convert the output of the tree to a coherent set of
rules would allow for others to grasp a better
understanding of our model.

REFERENCES (IEEE format)

[1] G. Vanden Berghe, “An advanced model and
novel meta-heuristic solution methods to
personnel scheduling in healthcare,” Jun. 2002,
Accessed: Mar. 18, 2021. [Online]. Available:
https://lirias.kuleuven.be/1675889.

[2] X. Qu, R. L. Rardin, J. A. S. Williams, and D.
R. Willis, “Matching daily healthcare provider
capacity to demand in advanced access
scheduling systems,” Eur. J. Oper. Res., vol.
183, no. 2, pp. 812–826, Dec. 2007, doi:
10.1016/j.ejor.2006.10.003.

[3] Seattle Children’s Hospital et al., “Innovation
and Best Practices in Health Care Scheduling,”
NAM Perspect., vol. 5, no. 2, Feb. 2015, doi:
10.31478/201502g.

[4] H. Ishibuchi, T. Nakashima, and T. Murata,
“Three-objective genetics-based machine
learning for linguistic rule extraction,” Inf. Sci.,
vol. 136, no. 1, pp. 109–133, Aug. 2001, doi:
10.1016/S0020-0255(01)00144-X.

[5] J. Denker et al., “Large Automatic Learning,
Rule Extraction, and Generalisation,” Mar.
2021.

50

Human Activity Recognition in Sports

Luca Trombetta1, Nathan Kowal2, Travis Cossarini3

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: 17lt21@queensu.ca

2 e-mail: nathan.kowal@queensu.ca
3 e-mail: travis.cossarini@queensu.ca

Abstract: The intention of this project was to apply machine learning on data collected from an Apple Watch to
predict various human activities. The results provide a stepping-stone to bringing activity recognition by smart
watches to being applied in sports analysis. There were five different activities that data was collected for
including jumping jacks, walking, baseball swings, basketball dribbling and basketball shooting. The data was
analyzed to look for potential ways of differentiating these activities. To approach the problem, a long short-
term memory model and random forest model were developed to predict the recorded activities. The results
from each model were compared and had promising measurements of accuracy of over 90%.

1. INTRODUCTION

1.1 Motivation

Data analysis in sports, typically referred to as “sports
analytics”, has started to play an integral role for many
professional teams and will soon reach an estimated
market size of $4 billion [1]. Data collection can help
teams win games, decide which players to roster and
increase their consumer engagement [1]. In 2015,
Major League Baseball implemented a tracking
technology known as Statcast, which uses a radar and
camera system to analyze player and ball movements
at 20,000 frames per second [2]. However, statistics
can only take teams so far. While Statcast is able to
analyze player speed, position, and distance from a
particular location, it cannot access precise player
movements [2]. The next logical step would be human
activity recognition (HAR) using wearable technology,
which would allow for more acute analysis of player
activities.

Thus, it was set out to develop a model that will be
able to identify various activities with the purpose of
application to sports analysis. This model will take
input data from wearable technology, opening the door
for live data collection and real-time breakdown during
training and games.

1.2 Related Works

Other researchers have previously used HAR to
analyze sports. Zhuang and Xue used a sliding window
approach to segment data and a convolutional neural
network (CNN) to analyze sports data in two
classifications – non-periodic activity with complex
motion states and weakly-periodic activity with
complex motion states. Their model preformed with an
average recall of about 95%, indicating the success of
the sliding-window approach. For future work, they
recommended smartwatch implementation of the
model to achieve live results for real-world
applications [3].

In another application, Hendry et al. worked on HAR
as a way to analyze the movements of ballet dancers in
an attempt to limit the development of musculoskeletal
pain disorders. Their data was manually annotated to
classify specific movements into classes before being
put into a fixed window of 1 second with a 75%
overlap. Using a CNN, their model preformed with
97.8% accuracy at the primary level of classification.
Self-identified gaps in their research included using
only female dancers and limiting HAR recognition to
simple jumps and leg lifting [4].

51

1.3 Problem Definition

As outlined in the above sections, HAR is becoming a
very popular area of research in sports analysis due to
its applications in performance improvements and
athlete health. This is not the first project that will
attempt to classify sport activities. With the knowledge
of past research done in the field, the team was able to
gain a good understanding of what is possible to
accomplish within the given time period. Additionally,
this work allowed for essential research into the best
type of data collection process and machine learning
model.

Based on prior team knowledge of artificial
intelligence and machine learning, it was decided that
a realistic project goal would be to implement and
compare two types of models. Instead of sourcing a
dataset from another source, the team agreed that it
was feasible to collect and process data ourselves. It
was decided that creating a front-end application for
real-time model feedback was outside of the scope of
the project, given time and absence of prior knowledge
in Swift programming.

2. METHODOLOGY

2.1 Dataset Generation

Data was collected using an Apple Watch gyroscope
and accelerometer. To access this data from the Apple
Watch, an app called Motion Collector was used. It
was sourced from GitHub and was originally created
by Aleksei Degtiarev [5]. About five minutes of data
was collected for each of the five chosen
classifications: jumping jacks, walking, baseball,
basketball shooting, and basketball dribbling.

Figure 1: Example of density plots for the X and Y signals of the
gyroscope.

Once data was collected, it required preliminary
analysis and preprocessing for model implementation.

Analysis was done by density plots for each activity
and sensor (see Figure 1). In the case of incomplete or
missing data, more data was simply collected to
replace the incomplete data. After analysis, the data
was segmented into two second windows with 50%
overlap. Then, a feature set of 27 features was created
from the windowed data. Finally, it was divided into
training data and testing data to be used on the model,
with 25% reserved for testing.

2.2 Model Selection and Development

The proposed solution was to develop a long short-
term memory (LSTM) model capable of identifying
human activity from the data collected by the Apple
Watch. This model was chosen because it of its power
for predicting based on time series data. It was
developed using the Keras library within TensorFlow.
Additionally, a random forest (RF) model was
implemented from the Scikit-Learn library for
comparison with the LSTM.

The LSTM model was trained on the windowed data
set, while the RF was trained on the feature set. The
results of both models were determined based on the
accuracy of predictions against the test data sets.

2.3 Additional Analysis

To optimize the performance of each model hyper-
parameter tuning was carried out on each model. To
tune the LSTM a Python library called Hyperas was
used to determine optimal output space dimensions,
and dropout coefficients for each layer of the model.
The optimization of the random forest was performed
with the Scikit-Learn library to choose the number of
decision trees for the model.

3. RESULTS AND DISCUSSION

Figure 2: Precision Matrix of LSTM

52

Figure 2 above shows the precision of the LSTM
model on the test data set after hyper-parameterization.
The model was evaluated over eight epochs and
struggled to differentiate the movements of shooting
and swinging a bat. This is likely due to the similarities
between these two motions leading to similar data
windows from the Apple Watch accelerometer and
gyroscope.

Figure 3: Precision Matrix of Random Forest

Figure 3 displays the precision of the random forest
model when run on the test data set. After hyper-
parameterization, it was determined that the optimal
forest size contained fifty trees. This model performed
very strongly in recognizing four of the five human
activities, but similarly to the LSTM model, struggled
to recognize shooting. Once again, this is likely due to
similarities with other motions.

Model Accuracy
LSTM 94.44 %

RF 96.32 %

Table 1: Results of the evaluated models

Table 1 summarizes the results from each model. The
LSTM model, which was originally expected to be the
stronger model, was outperformed by the random
forest model. This is likely due to the set of 27 features
developed for the RF model which allowed for more
correlation between the data to be found. However,
both results have quite high accuracy and exceed the
original project goals of 80%.

4. CONCLUSIONS AND FUTURE WORK

The ability to correctly predict movements based only
off the accelerometer and gyroscope measurements

from an Apple Watch is quite promising and has
possible applications in the realm of sports analysis.

In the future, there are several steps to be taken to
improve the results of this project. This most
immediate step would be to implement an iOS
interface allowing for real-time recognition of the
watch wearers activities. This an essential component
of being able to apply this project in sports analysis. In
addition to real-time recognition, there must be more
classes introduced to each model. Currently the five
classes cover a diverse number of sports, but it would
be beneficial to introduce various motions from the
same sport, once again brining the project closer to
applications in sports analysis.

REFERENCES

[1] A. Ricky. “How Data Analysis In Sports Is

Changing The Game.” Forbes.
https://www.forbes.com/sites/forbestechcouncil
/2019/01/31/how-data-analysis-in-sports-is-
changing-the-game/?sh=b602d293f7b4
(accessed Mar. 15, 2021).

[2] “Statcast | Glossary | MLB.com,” MLB.com.
https://www.mlb.com/glossary/statcast
(accessed Mar. 15, 2021).

[3] Z. Zhuang and Y. Xue, “Sport-Related Human
Activity Detection and Recognition Using a
Smartwatch,” Sensors, vol. 19, no. 22, Art. no.
22, Jan. 2019, doi: 10.3390/s19225001.

[4] D. Hendry, K. Chai, A. Campbell, L. Hopper,
P. O’Sullivan, and L. Straker, “Development of
a Human Activity Recognition System for
Ballet Tasks,” Sports Medicine - Open, vol. 6,
no. 1, p. 10, Feb. 2020, doi: 10.1186/s40798-
020-0237-5.

[5] MotionCollector. (2018), A. Degtiarev.
Accessed: Nov. 21, 2020. [Online]. Available:
https://github.com/degtiarev/MotionCollector

53

Interview Confidence Scoring

Connor Winters1, Camila Izaquierdo2, Ryan Turnbull3, Ana Pleava4

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: c.winters@queensu.ca

2 e-mail: 18cni@queensu.ca
3 e-mail: 18rht1@queensu.ca

4 e-mail: ana_pleava81@outlook.com

Abstract: For job seekers around the world, the recruiting process can be a daunting and nerve-raking
endeavour, particularly when it comes time for an interview. To better prepare jobseekers, the authors have
partnered with a Waterloo-based start-up, that provides feedback on mock interview tailored to the role(s) they
are applying for. Evaluating an interview is often very subjective, with a successful interview incorporating a
wide range of factors, including accurate content, engaging delivery all supported by appropriate non-verbal
communication. The complexity and intricacy of an interview makes it difficult to provide consistent and
scalable feedback. As such an AI solution was developed, that evaluates an interviewees confidence to provide
feedback based on their non-verbal communication. With a computer vision model capable of scoring
confidence in a mock-interview, it is possible to provide feedback to users, while simultaneously ensuring
scores are consistent and replicable.

1. INTRODUCTION

1.1 Motivation

For job seekers around the world, the recruiting
process can be a daunting and nerve-raking endeavor,
particularly when it comes time for an interview.

Interview preparation for most typically consists of
doing research on the company and preparing for
behavioral or technical questions. One aspect of
preparation that is often overlooked in this process is
the delivery of content and non-verbal communication.

Since interview preparation is often done individually,
people tend to focus more on the content of their
responses rather than the delivery. As a result, despite
answering questions correctly, candidates may be
overlooked due to poor engagement and delivery. The
complexity and intricacy of an interview makes it
difficult to provide consistent and scalable feedback.

As such an AI solution has been developed, that
evaluates an interviewees confidence to provide
feedback based on their non-verbal communication.

1.2 Related Works

At the moment, limited tools exist with the focus of
providing feedback on nonverbal communication. One
similar platform that offers interview preparation is
‘Big Interview’. The platform offers hands-on practice
with mock interviews tailored to the specific industry,
job, and experience level. This platform emphasizes
heavily on the content of the response rather than the
execution and delivery.

1.3 Problem Definition

To better prepare job seekers, the authors have
partnered with a Waterloo-based start-up that provides
feedback on mock interview tailored to the role(s) an
individual is applying for. At the moment, the Ace
platform allows users to sign up and selects their
desired field to prep for. The recorded interview is

54

then evaluated by the Ace founder on different criteria
and feedback is then returned to users with actionable
insights to improve their interview skills. The key
problem here is that this manual process severely
limits Ace’s ability to scale their platform.
Additionally, this manual process may result in
unintentional bias and inconsistent scoring.

With a computer vision model capable of scoring
confidence in a mock-interview, it is possible to the
ability to provide feedback to their clients, while
simultaneously ensuring scores are consistent and
replicable. For the partner, this is an important step in
developing a scalable platform while numerous
extensions of this application emerge, particularly for
firms looking to reduce bias and human capital
requirements for their own hiring processes.

2. METHODOLOGY

From preliminary discussions with the client, it was
identified that the video analysis portion of the
interview process would be optimized. To analyze the
video, two solutions were explored.

2.1 Facial Point Landmarks

The first consisted of creating a model to analyze the
movement of facial data points. The data collected
from these points would then be filtered through the
scoring program to give feedback. Facial landmarks
are classified using a pre-trained ensemble of
regression trees leveraging Python libraries including
OpenCV, dlib, and TensorFlow.

2.2 Facial Emotion Recognition

Another solution that was researched is the Facial
Emotion Recognition (FER) model. This
Convolutional Neural Network (CNN) was developed
using the Python libraries OpenCV and TensorFlow.
Using the Haar Cascade classifier and a dataset of over
seven thousand emotion labelled images, the model
can identify facial expressions in a video stream. The
corresponding emotions are shown in real-time above
the user’s head.

2.3 Model Analysis

The solutions were combined to create a dually
functional model that would output two forms of data,

as seen in figures 1 and 2 below. The data collected
from the joint model is then inputted into the result
scoring program to summarize feedback for the user as
seen in figures 3 and 4 below.

Figure 1: Facial Landmark Detection

Figure 2: Emotion Recognition

3. RESULTS AND DISCUSSION

The first component of the solution involving facial
landmark detection, leverages a pre-trained ensemble
of regression trees outputting the x and y coordinates
of each facial landmark in a given frame of a recording
interview. The model is capable of identifying the
correct pixel location for each facial landmark, to the
extent a human would be able to accomplish.

The second component of the solution includes a 7-
block CNN, with each block incorporating batch
normalization and max pooling. The first block
includes 32 filters, growing to 256 filters in the final
block. Following the convolutional layers, the model
includes 3 dense layers followed a output layer with 5
outputs nodes.

55

Figure 1: Results of the first 10 facial landmarks in the first ten intervals of the video.

Figure 2: Results of the total facial emotions during the video.

The classification report of the emotion recognition
CNN model is summarized in Table 1

Emotion Precision Recall
Angry 0.53 0.59

Happy 0.79 0.86

Neutral 0.32 0.22

Sad 0.56 0.52
Surprise 0.69 0.83

Table 2: Emotion Recognition Classification Report

While the overall accuracy is just over 60% the
model’s tendency is to classify emotions as neutral,
resulting in only expressive emotions to be classified
beyond neutral.

The final component of the solution is tracking the
output of the two models to provide feedback to users.
With the facial landmark model, the x and y
coordinates are recorded for each frame or about 22
times per second. After the coordinates are identified
the total displacement is calculated. Leveraging
academic research in the neuroscience field, it was
found that increased levels of movements are linked to
nervousness and anxiety, which can be provided as
relevant feedback to users.

The emotion recognition model tracks the classified
emotion for each frame of a recorded interview and
then finds the proportion of each emotion throughout
the interview to use in the scoring algorithm.

4. CONCLUSIONS AND FUTURE WORK

With the implementation of the emotion recognition,
and facial detection models, the model was able to
successfully gather some key data on an interviewee

during an interview. However, the data is not perfect,
and steps need to be taken to analyze the data properly
and apply a proper score to the interview.

Currently the emotion recognition model is only 60-
70% accurate and has a tendency to classify emotions
as neutral. To improve its functionality in the grading
process, a more accurate model is beneficial, alongside
a more diverse set of emotions to classify. This will be
accomplished by expanding the training data used, and
by exploring methods to improve the classification
accuracy such as ensemble methods.

Additionally, although the movement of key facial
landmarks are tracked over time, it has not
implemented this into the scoring. To optimize the
scoring system, the movement of facial features will
need to be assessed over time and with the findings
implemented into the scoring algorithm. Fully
incorporating the aforementioned improvements will
make the grading system much more substantial and
accurate.

Finally, the functionality of tailoring feedback to the
desired role of a particular candidate, as different roles
may be more receptive to different emotions displayed
by candidates.

56

Product Classification for E-commerce
Joseph Grosso1, Inika Chikarmane2, Daisy Dan3, Mengyang Liu4, Jose Luis Mangubat5

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 15jjg6@queensu.ca
2 inika.chikarmane@queensu.ca

3 18cd11@queensu.ca
4 19ml49@queensu.ca
5 17bm1@queensu.ca

Abstract: Product classification is extremely important for e-commerce companies for the customer experience,
but it can be hard to get it right when trying to classify hundreds of thousands of products from disparate
sources. Using machine learning and Natural Language Processing techniques, the process of classifying new
items into a product category can be automated. With these tools, we were able to create a product classifier
that separated products in the Loblaws product catalogue into their correct category at an accuracy rate of
~90%. This system could improve Loblaws manually constructed product categorizations and many aspects of
the business and customer experience.

1. INTRODUCTION

1.1 Motivation

Online shopping is a fact of life for most consumers
today, especially during the COVID-19 pandemic. To
run a successful online business, a company must
optimize the user experience, provide relevant search
results for desired products, and ensure that the site
can be found easily through search engines like
Google [1]. This can be difficult when an online shop
has to organize thousands of products from different
vendors.

All of these issues can be helped by using product
categorization. By classifying products into a
taxonomy, the platform can associate products with
keywords and better organize their products for search.
This is key for improving the customer experience.

Product categorization becomes hard to manually
maintain as the number of products a company carries
expands quickly. Classifying new products becomes
laborious and requires in-depth knowledge of the
product hierarchy. Machine learning classification
techniques can help with product classification,

automating insertion of new products into product
taxonomies.

1.2 Problem Definition

The Canadian grocery chain Loblaws manages
thousands of products in their catalogue. Each of these
products need to be categorized into Loblaws custom
product taxonomy. It’s extremely important that
products are categorized correctly, because a mistake
in classification is hard to find and can cause errors for
the business and can make products harder to find for
customers on Loblaw’s online platform.

Using features associated with each product, like a
products title and description, we aim to create a
machine learning model to classify products in the
Loblaws catalogue, and make predictions on brand
new products that have no prior sales history. To
achieve this, we must use techniques from Natural
Language Processing (NLP) to parse the unstructured
data in the product titles and descriptions into a form
that is useful for our models. We must also take into
account the hierarchical structure of our data when
considering our model’s accuracy and other metrics to
assess our model’s performance.

57

Figure 1: A bar graph showing the imbalance in the dataset between
different product categories.

2. METHODOLOGY

The online branch of Loblaws, Loblaw Digital,
presented our team with a product catalog of over
120,000+ products. Each product in the dataset had a
title, a product description, a unique identifier, and an
MCHID, which represented where the product
belonged in the product taxonomy.

articleID MCHID NAME Description

20433433_AB M12345678 Spam Bacon Ready to eat -
cold or hot

Table 1: An example data point from our dataset ofLoblaws products.

For the majority of our models used for our problem,
we needed to parse the product descriptions using NLP
techniques to allow for machine learning models to
train on the information that they are given. This
process starts with standard text pre-processing steps,
which helped in removing noise from our data. These
processing steps included merging the titles and
descriptions into a single text, removing unhelpful
strings from the text (ie. stop words like “the” and “a”,
HTML tags, special characters), and applying
lemmatization to the tokens (replacing inflected forms
of a word so they can be analysed as a single item, ie
changing playing, plays, or played to play).

After cleaning the data, we then needed to convert our
data into numerical features that a machine learning
model could understand. For this, we used the
Bag-of-Words (BoW) approach to convert the text into

a vector which represented the number of times a word
had been used in the text [2]. We used this method
because it allowed us to simplify the problem down to
the simple presence of a word. This method doesn’t
rely on the local context of the words like Word2Vec
or GloVe, which was useful because the text we
worked with didn’t follow consistent formats. BoW is
also very simple for human understanding, which
allows us to directly determine the importance of
words in our model. We were also able to leverage
sklearn’s HashingVectorizer to reduce the memory
usage of our vectorization algorithm, and to allow our
model to allow for our model to add new words to its
vocabulary, should the model be re-trained in the
future [3].

To begin our analysis, we trained our models on only
the highest levels of the hierarchical structure,
meaning that we tried to identify the broadest levels of
categorization. This meant the team could immediately
work on the project without having to deal with the
hierarchical structure of the data, but this model would
only have value for the team as an exploratory step.
The uniqueness of the hierarchical classification meant
that commonly used metrics for model performance
like accuracy, precision, and recall would not express
the true performance of the model. These “flat”
evaluation metrics do not capture how some classes
have a stronger relationship than others - for example,
if our model misclassified a fruit product as a
vegetable, this outcome is better than if the model had
misclassified the item as a grain product, which is still
better than an incorrect classification as a non-food
item. To regulate for these outcomes, we used
hierarchical precision and hierarchical recall as our
metric to judge these deeper models [4].

3. RESULTS AND DISCUSSION

We have trained most of our models on the broadest
category as mentioned in the Methodology section.
Using our transformed dataset, we trained many
machine learning models using SciKit Learn and
Keras. We found that three of our models performed
the best: Multinomial Logistic Regression and
Random Forest from scikit-learn, and Recurrent
Neural Network (RNN) using Keras.

58

Model Accuracy

Random Forest 86.07%

K-Neighbors 82.13%

Naive-Bayes 76.43%

Support Vector
Machines

84.26%

Recurrent Neural
Network

91.06%

Logistic Regression 85.27%

Table 2: Results of our models trained on the highest levels of the
hierarchy structure, with the most promising models highlighted in bold.

The model with the best accuracy is RNN, with an
accuracy of 91.06%. While Logistic Regression is not
performing as well as RNN or Random Forest, it offers
the benefit of being straightforward and offering an
implementation of Kesler’s Construction (using
softmax regression) that allows for a single model to
be trained for multinomial classification, unlike the
other methods that use a One-vs-One or One-vs-Rest
approach [5]. This method has also been implemented
successfully by other data science teams [6], and so we
will continue with this model in our testing on the
lower levels of the hierarchy.

The performance of these models is promising,
showing that we may be able to move these models
down to the lowest levels of the product hierarchy
successfully. A successful classifier would return the
top N most likely classes that a given product belongs
to given its name and title, and would classify based
on the most granular classification level.

4. CONCLUSIONS AND FUTURE WORK

We have many ideas for how we can improve our
machine learning models in future work. Our models
will continue to be optimized to classify on the lowest,
most granular levels of the hierarchical structure,
which is where the most value will come from for the
business. In the coming weeks we will be
implementing this functionality on the model using the
techniques we found effective at higher levels and
using our hierarchical performance metrics. We also
see value in using oversampling techniques to address

the issue of large imbalance between classes in the
dataset.

We will also make the model production system ready
by wrapping all of our functionality in
well-documented classes, and by implementing a
server in Flask that will allow any system at Loblaw
Digital to make a request to our model for
classification.

In conclusion, our group has created a fully fleshed out
approach to the problem of product classification for
an e-commerce site. With our product, Loblaw Digital
will be able to provide a better experience for both
their online customers and their vendors. We found
that this type of product could bring value to any
e-commerce site with a large product catalogue.

REFERENCES

[1] Limarc Ambalina, “What is Product
Categorization?”, Lionbridge.ai, October 10,
2019

[2] Jason Brownlee, “A Gentle Introduction to the
Bag-of-Words Model”, Machine Learning
Mastery, October 9, 2017

[3] scikit-learn version 0.24.1, (scikit-learn
developers), “HashingVectorizer”

[4] Eduardo P. Costa, Ana Carolina Lorena, A.
Carvalho, A. Freitas, “A review of
performance evaluation measures for
hierarchical classifiers”, Proceedings of the
AAAI 2007 workshop ‘‘Evaluation methods
for machine learning”, 2007

[5] Kai-Wei Chang, “Seminar: Machine Learning
in Natural Language Processing, Lecture 3:
Multi-Class Classification”, University of
California Los Angeles, 2017

[6] Jeet Mehta, “Categorizing Products at Scale”,
Shopify Engineering, April 30, 2020

59

Stock Options Volatility Prediction

Alexandre Le Blanc1, Andrew Brown2, Smeet Chheda3, Tanner Dunn4

QMIND – Queen’s AI Hub

Queen’s University, Kingston, Ontario K7L 3N6, Canada.

1 e-mail: a.leblanc@queensu.ca
2 e-mail: 17amb@queensu.ca

3 e-mail: smeet.chheda@queensu.ca
4 e-mail: tanner.dunn@queensu.ca

Abstract: The volatility of the Stock Market is an important factor that should be taken into consideration when
trading options. Previous research has shown that using machine learning techniques, predicting volatility can
lead to positive returns. Using the CBOE Volatility Index (ticker: VIX), a time-series ARIMA model was used to
forecast the volatility of the S&P 500. Using the predictions, options trading strategies were recommended based
on the differences between the current and forecasted volatilities. The ARIMA model was able to obtain an AIC
of 6665.5, and a MAPE of 7.5% on 14-day forecasts. The findings indicate that by using time-series forecasting,
the volatility of the market can be isolated and used to generate greater alpha.

1. INTRODUCTION

1.1 Motivation
The stock market has been a money-making tool for
millions of people around the world. Whether it be day
trading, investment banking, or simply placing one’s
savings in a mutual fund, the market has helped
countless people achieve financial freedom, or at least
get closer to it. This, however, comes with a
significant and possibly costly learning curve. Several
prominent figures in the finance world have agreed
that beating the market is always possible, but not
probable [1].

At its foundation, beating the market comes down to
being able to look at data, make connections and turn it
into useful information. With the vast arsenal of
machine learning tools available on the internet, it is
quite possible to aggregate this data and make
intelligent decisions from it. Nevertheless, determining
the direction of future stock price movement is
challenging. Using options trading strategies, traders
can shift the focus of their analysis from predicting the
direction of price movement to predicting the
magnitude of the movement.

1.2 Related Works
A paper published by the engineering faculty at New
York University discusses this problem in a similar
context [2]. They utilize learning regression methods
to predict the realized variance of the S&P 500. By
developing algorithms to correct deviation between the
VIX and the actual realized variance of the SPX, they
were able to better predict it. It is noted that out of
money options are more predictable and the implied
volatility of calls have more significance in data
manipulation.

1.3 Problem Definition
The aforementioned paper demonstrates the viability
of using machine learning to formulate accurate
predictions about the market. Our exploration,
however, takes a slightly different approach.

Options contracts are derivatives of regular securities
and present traders with the ability to capitalize on
both upward and downward movements in the market.
They represent an agreement to purchase or sell shares
of a given stock at a pre-defined price before a set
expiry date. Using different contracts simultaneously
allows investors to formulate strategies that can
mitigate risk. These strategies can be constructed in

60

such a way where the trader sees a profit if the
underlying stock price moves significantly, regardless
of direction. Strategies can also be built such that a
profit is made if the underlying stock price moves very
little. In other words, options trading strategies allow
traders to shift their focus from predicting the direction
of stock price movement, to predicting the magnitude
of the movement, represented by the stock’s volatility.

This study analyzes the volatility of the VIX to extract
a prediction as to the strength of the market in a given
future period. Then a decision-making algorithm
outputs an appropriate options trading strategy that
reflects the model’s view on future volatility.

2. METHODOLOGY

2.1 Data Exploration
The team researched and analyzed the Chicago Board
Options Exchange (CBOE) Volatility Index (VIX).
The price of the VIX is obtained from the implied
volatility of various options contracts belonging to
securities in the S&P 500. The data was taken from
Yahoo Finance using the “yfinance” API. This API
allows users to scrape financial data in a specified time
window. The model was designed to analyze the recent
volatility of VIX to forecast the future volatility and
determine which options trading strategy would yield
the greatest returns.

Figure 1: VIX Close Price 2010 - 2021

Figure 1 above displays the VIX closing price since
2010. This chart essentially represents what
professionals think of the volatility of the S&P 500.
The dataset’s features are ‘Date’, ‘Open’, ‘High’,
‘Low’, ‘Close’, and ‘Adjusted Close’. The ‘Close’
price was selected as time-series data to analyze and to
be forecasted.

2.2 Proposed Solution
The proposed solution is to use the time-series analysis
algorithm known as an Auto Regressive Integrated
Moving Average (ARIMA) model to predict the future
values of the VIX. ARIMA models are a combination
of Auto Regressive (AR), Differencing (I), and
Moving Average (MA) models, discussed below:

AR(p): Auto Regressive Model
AR models forecast based on their own lags (a lag
simply refers to the previous values in the time-series),
utilizing the pth first lags (i.e.: an AR(3) model uses the
first three lags). The equation for AR is shown below,
where 𝑌 is the first lag of the series, 훽 is its
corresponding coefficient, 𝑌 and 훽 are for the
second lag, and so on, 𝛼 is the intercept term, and 휖 is
the error term:

𝑌 = 𝛼 + 훽 𝑌 + 훽 𝑌 + ⋯ + 훽 𝑌 + 휖

I(d): Differencing Parameter
The differencing parameter d refers to the number of
differencing required to make a time-series dataset
stationary (an important requirement for datasets used
for forecasting). In this context, differencing refers to
subtracting the original time-series by itself shifted
backwards by one. The number of differencing
required to make a dataset stationary determines the d
parameter. The Augmented Dickey-Fuller test was
used to determine stationarity.

MA(q): Moving Average Model
MA models base their current forecasts on the qth most
recent errors (residuals) of the previous forecasts. The
equation for MA is shown below:

𝑌 = 𝛼 + 휖 + 휙 휖 + 휙 휖 + ⋯ + 휙 휖

Where 𝛼 is once again the constant intercept term, 휖’s
are the error terms, and 휙’s are the error terms’
constant coefficients.

ARIMA(p,d,q)
An ARIMA model formulates its prediction by
combining all of the aforementioned models, that is,
by using its own lags and its previous forecasts errors,
as shown in the equation below:

𝑌 = 𝛼 + 훽 𝑌 + ⋯ + 훽 𝑌
+ 휙 휖 + ⋯ + 휙 휖 + 휖

Note how this is simply a combination of the AR and
MA models’ equations.

61

The optimal p and q values were determined through
visual analysis of autocorrelation function (ACF) plots
and partial autocorrelation function (PACF) plots.

2.3 Solution Evaluation
The final portion of the solution is to suggest an
options trading strategy. The success of the strategy
depends on the volatility of the specified derivative.
This means the goal of the ARIMA model is to predict
high or low volatility. The team tackled this
assignment by comparing the forecasted volatility
value to the most recent volatility value. If the value is
forecasted significantly higher, a high volatility
strategy is recommended, and vice versa. Furthermore,
if the volatility is predicted to remain relatively stable,
a medium volatility strategy is recommended. An
example of this can be seen below in Figure 2. In this
case, the ARIMA model forecasted a lower volatility
value than the current volatility, thus causing it to
suggest a Married Put (low volatility) strategy.

Figure 2: Example Output from ARIMA and Decision Algorithms.

Evaluating the solution was done by having the
ARIMA model forecast over a certain number of past
data points with known VIX values, i.e.: predicting
over the most recent 21-days, using all prior data
points. The forecasted values were then compared to
the actual values to determine its prediction accuracy
(discussed below).

3. RESULTS AND DISCUSSION

Using the ARIMA analysis steps described above, it
was determined that the optimal p, d, and q ARIMA
hyperparameter combinations were (1,0,0) and (0,1,1).
To evaluate both models, the following metrics were
used: Akaike Information Criterion (AIC), Mean

Absolute Percentage Error (MAPE), and Correlation.
The AIC is a commonly used metric in statistics to
determine how well a model fits the data it is trained
on. The AIC favors models which use less parameters
in order to avoid over-fitting. Models with low AIC
are ideal. The MAPE, as the name suggests, computes
the percentage difference between the actual and
forecasted time-series’ values at each time stamp, and
averages these values, returning a value between 0 and
1. Once again, models with lower MAPE scores are
favorable. The Correlation metric is simply the
correlation between the actual and forecasted data
points, where we want the correlation to be high
between the two datasets, indicating that the forecasted
data resembles the actual, at least in trend. The MAPE
and Correlation metrics were selected as they are
unaffected by the scale of the data, outputting values in
the range [0,1] and [-1,1] respectively. Therefore, the
scores can be easily evaluated and compared
regardless of the magnitude of the time-series’ data.

To obtain the results, we evaluated both models
against the VIX dataset with a 14-day and 21-day
predictions. Tables 1 and 2 summarize these results:

Accuracy
Metrics ARIMA(1,0,0) ARIMA(0,1,1)

AIC 6665.5 6704.9
MAPE 0.07521 0.11747
Correlation 0.83650 -0.83162

Table 1: Summary of various accuracy metrics for ARIMA(1,0,0) and
ARIMA(0,1,1) models on the VIX dataset with 14-day forecast periods.
Italicized and bolded scores indicate the favorable scores.

Accuracy
Metrics ARIMA(1,0,0) ARIMA(0,1,1)

AIC 6665.5 6704.9
MAPE 0.09874 0.09413
Correlation 0.45685 -0.50305

Table 2: Summary of various accuracy metrics for ARIMA(1,0,0) and
ARIMA(0,1,1) models on the VIX dataset with 21-day forecast periods.
Italicized and bolded scores indicate the favorable scores.

As expected, the ARIMA(1,0,0) performed the best in
most cases, with the lowest AIC scores and positive
correlation values of 0.84 and 0.46 for 14-day and 21-
day forecasts, respectively. This indicates that the
ARIMA(1,0,0) best fit the VIX data, and that its
forecasts are correlated to the actual values to a certain
degree. Although the ARIMA(0,1,1) obtained the best
MAPE score for a 21-day lag, its correlations were
negative, which is undesirable as it suggests that in
most cases, the model’s predictions are in the opposite

62

direction of the actual values, which is evidently a bad
trait for the model to have.

Qualitative analysis of the forecast plots, shown in
Figures 3 and 4, make it clear that the ARIMA(1,0,0)
model outperforms the ARIMA(0,1,1) model as it
provides more realistic predictions.

Figure 3: Plot of ARIMA(1,0,0) model on VIX dataset with 28-day lag.

Figure 4: Plot of ARIMA(0,1,1) model on VIX dataset with 28-day lag.

The plots make it clear that the ARIMA(1,0,0) is more
suited for the VIX dataset than the ARIMA(0,1,1)
model, as the ARIMA(0,1,1) fails to capture even the
slightest trend of the actual data in its forecast.

Note that even the favorable ARIMA(1,0,0) model,
which accurately forecasts the overall direction of the
dataset, is still very simplistic. This is in part a result of
the fact that ARIMA models (especially a (1,0,0)
model) use very few past data points to make their
forecast. For a dataset that has occasional large jumps
and dips, this is a major limitation.

4. CONCLUSION AND FUTURE WORK

The team focused on stock volatility prediction using
an ARIMA model time-series forecasting. A major
focus of time and effort was dedicated to determining
the optimal p, d, and q values based on analysis of data
stationarity, ACF and PACF plots. Once these values
were determined, the optimal ARIMA models were
tested against historical VIX data to compare predicted

and actual volatility to determine forecasting accuracy.
The final solution then implemented a decision-
making algorithm which compared its forecasted
volatility to the current volatility in order to suggest a
favorable options trading strategy for greatest yield.

Throughout the project, it was concluded that ARIMA
models are quick and easy forecasting tools that can
capture general trends and make reliable predictions on
simpler and clean ‘vanilla’ time-series data. However,
it falls short in capturing the finer details in very
volatile and noisy datasets, which would be necessary
to make profitable bets in the stock market. Thus, if
you require predictions which can capture the
subtleties of a complex dataset, you may find more
success using a different model, such as a recurrent
neural network (RNN). As a next step, the team would
like to implement an autoregressive RNN, which has
the capability of being trained on more data and allows
past predicted values to be fed back into the model to
refine the predictions at each step.

Another next step for the project would be to run the
model against live price data and perform real options
trading to get real results on profitability. If the results
of these tests are accurate, the scope of this model
could be expanded to include different stock indexes.
This model has the potential to be powerful if it can
predict on a wide variety of indexes, as it could be
used to rapidly determine which options trading
strategy are best suited in any situation.

5. GITHUB REPOSITORY AND DEMO

https://github.com/andrewmbrown/CUCAI2021_Demo

https://share.streamlit.io/andrewmbrown/cucai2021_d
emo/main/main.py

6. REFERENCES

[1] A. G. Ribeiro, "Can Regular Investors Beat the
Market?," Investopedia, 16 October 2019.
[Online]. Available:
https://www.investopedia.com/articles/trading/10/
beat-the-market.asp. [Accessed 20 March 2021].

[2] P. Carr, L. Wu and Z. Zhang, "Using Machine
Learning to Predict Realized Variance," New
York University, New York City, 2020.

63

https://github.com/andrewmbrown/CUCAI2021_Demo
https://share.streamlit.io/andrewmbrown/cucai2021_demo/main/main.py
https://share.streamlit.io/andrewmbrown/cucai2021_demo/main/main.py

Stroke Prediction

Sydney Caulfeild1, Sarah Pak 22, Nathanael Yao3, Hoz Rashid4

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1 e-mail: sydney.caulfeild@queensu.ca

2 e-mail: 16shp2@queensu.ca
3 e-mail: 18ny13@queensu.ca
4 e-mail: 16har@queensu.ca

Abstract: Stroke prevention methods were explored because strokes are the leading cause of death in Canada
and the number of deaths is expected to grow over the next decade. As a solution to this problem, a model was
created to predict a person’s risk of having a stroke based on their physical traits and lifestyles. Current models
that use facial recognition to detect strokes provide certain benefits but are less desirable than the proposed
stroke prediction model as they cannot detect strokes before they happen. The team utilized a multilayer
perceptron model on data containing attributes such as gender, blood pressure, and body mass index to predict
a person's likelihood of stroke. The model was able to achieve a 96% accuracy on testing data.

1. INTRODUCTION

1.1 Motivation

Stroke is the third leading cause of death in Canada.
Strokes are caused by the sudden loss of brain function
that follows a brain blood vessel blockage or rupture.
Its symptoms include loss of sensation, difficulty
speaking, vision difficulties, headache, and loss of
coordination [1].

The effects of a stroke can range from mild to severe,
and among those who survive their stroke, many never
fully recover. According to Statistics Canada,
approximately 36% of these survivors are left with
significant disabilities five years after their stroke and
more than 40% require assistance with activities of
daily living [1].

In a study conducted in 2015 by the American Heart
Association, the number of individuals experiencing
the effects of stroke in Canada is projected to increase
from 405 000 in 2013 to between 654 000 and 726 000
in 2038 [2].

With the high rates of stroke in Canada and the
expected growth in the next decade, the team was
motivated to explore methods for stroke prediction and
hence prevention.

More specifically, different machine learning models
for stroke detection were compared and optimized.

1.2 Related Works

There have been various studies on stroke prediction,
including research conducted in 2018 that used images
of facial features to determine whether a person has
had a stroke [3].

They focused on the expressional asymmetry and
mouth askew to make predictions. To classify facial
stroke, the Support Vector Machine (SVM), Random
Forest (RF), and Bayesian Classifier were adopted as
classifiers. The research found that the recognition
accuracy of SVM, Random Forest, and Bayes are
100%, 95.45%, and 100%, respectively [3].

64

1.3 Problem Definition

Models that use facial expressions require pictures to
inform a patient if they are having a stroke. Rather
than identify a case of stroke, the desired solution will
use data on people’s lifestyles to state their likelihood
of having a stroke. Not only is this data more
accessible than pictures, but it can also prevent cases
by giving patients their chance of stroke and allowing
them to change their unhealthy habits.

2. METHODOLOGY

2.1 Data Generation

Many factors affect one’s susceptibility to stroke,
including gender, blood pressure, body mass index
(BMI), and physical activity [4]. A dataset was
sourced from Kaggle as it contains all the major stroke
risk factors [5]. The dataset has 11 attributes and a
label indicating whether each patient has had a stroke.

A heatmap was used to analyze the correlation
between all attributes and stroke. As seen in Figure 1,
BMI has the weakest relationship to stroke, however,
the performance decreased when the attribute was
removed. BMI is also the only attribute containing null
values which were all replaced with the BMI
attribute’s mean.

Figure 1: A heatmap used to visualize the relationship strength among
attributes and stroke.

2.2 Model Creation

The selected model for this solution is a multilayer
perceptron. Multilayer perceptron’s are a feedforward
neural network that have an input layer, an output

layer, and hidden layers. Neural networks such as
multilayer perceptron's are useful for predicting results
based on input data because the networks are
structured in different layers.

After some testing with other types of models such as
an SVC model, the team chose to use a multilayer
perceptron because it is effective at handling a wide
range of different features. Since the stroke detection
data has 11 attributes, the results that the team got
from the multilayer perceptron model were better than
other models that we tested.

2.3 Additional Analysis

Further modifications were done to the model to
optimize the multilayer perceptron model’s
performance. The number of epochs, nodes, and layers
were varied to analyze their impact on the model’s
behavior. All modifications were evaluated by
comparing the model’s maximum validation and
training scores.

3. RESULTS AND DISCUSSION

Model Training Testing
V1 0.960 0.952

V2 0.960 0.9508

V3 0.9544 0.9615

V4 0.9579 0.9532

Table 1: Results of the different model variations. The training values are
the model’s accuracy during its training while the testing values are the
model’s accuracy on the test data.

In the first version of our model, V1, values were
normalized using a mapping function that takes in data
and outputs an array of unique strings. The multilayer
perceptron had a top layer with 10 nodes, a middle
layer with 20 nodes, and an output layer with 3 nodes.
The model was tested with 150 epochs and a batch size
of 30.

The first version of the model demonstrated overfitting
after 16 epochs. Therefore, the second version, V2,

65

had only 30 epochs and another middle layer with 10
nodes. However, as seen in Table 1, the testing
accuracy for the second version decreased.

For the third version of our model, V3, the number of
nodes in each dense layer of the multilayer perceptron
were modified. The number of nodes in the top layer
was equal to the number of features, two middle layers
were added with 30 nodes and 10 nodes respectively,
and an output layer with 3 nodes was used.

In the final version of the model, V4, the number of
nodes was changed again for the four dense layers. In
the top layer the number of nodes was again equal to
the number of features. There were two middle layers
with 40 nodes and 30 nodes, and an output layer with 2
nodes.

The third version produced the highest percent
accuracy during testing and as such was selected as the
final model.

4. CONCLUSIONS AND FUTURE WORK

The team built a model that predicts a person's chance
of having a stroke given certain inputs. Using data to
assess a person's risk of having a stroke may help
assist doctors in identifying people who are at high risk
and give them appropriate advice and treatment.

The next steps for the model include testing different
learning methods such as Random Forest to determine
which learning method is optimal for this dataset.
Although a multilayer perceptron model was selected
because of its efficiency at handling multiple features,
it is important to test other models.

Furthermore, the model may be improved by testing
out different methods of data preprocessing to know
which data is most useful for predicting a stroke. For
instance, other inputs can be removed or modified to
see which inputs are important to getting an accurate
prediction.

Finally, more data should be collected to construct our
own dataset to put our model to the test against current
data.

REFERENCES

[1] H. Krueger, J. Koot, R. E. Hall, C. O'Callaghan,

M. Bayley and D. Corbett, "Prevalence of
Individuals Experiencing the Effects of Stroke in
Canada: Trends and Projections," NIH, 2015.

[2] Government of Canada, "Stroke in Canada:
Highlights from the Canadian Chronic Disease
Surveillance System," 09 12 2019. [Online].
Available: https://www.canada.ca/en/public-
health/services/publications/diseases-
conditions/stroke-canada-fact-sheet.html.
[Accessed 2 March 2021].

[3] C.-Y. Chang, M.-J. Cheng and M. H.-M. Ma,
"Application of Machine Learning for Facial
Stroke Detection," IEEE, 2018.

[4] A. S. A. "Stroke Risk Factors," 2021. [Online].
Available: https://www.stroke.org/en/about-
stroke/stroke-risk-factors. [Accessed 2 February
2021].

[5] F. Soriano, "Stroke Prediction Dataset," 1 January
2021. [Online]. Available:
https://www.kaggle.com/fedesoriano/stroke-
prediction-
dataset?fbclid=IwAR0JNuSXufCZgf16g4Hoiq8m
foULN28r6wtxZ-zXEWx-qWJQttIhDOieC2k.
[Accessed 8 January 2021].

66

Using Depth Information to Improve Object
Recognition with Deep Learning

Awni Altabaa1, Eduard Varshavsky2, Jada Buchanan3, Ngoc Bao Han “Mimi” Nguyen4

QMIND – Queen’s AI Hub

Queen’s University, Kingston, Ontario K7L 3N6, Canada.

1 e-mail: awni.altabaa@queensu.ca
2 e-mail: 18ev@queensu.ca

3 e-mail: 16jmb7@queensu.ca
4 e-mail: 19bhnn@queensu.ca

Abstract: Over the past decade, deep learning has driven great progress in computer vision and 2D image
understanding. On the other hand, 3-Dimensional image understanding is still comparatively immature. In recent
years, RGB-D cameras combining visual and 3D shape information have become more accessible, enabling
progress to be made in the field. In this paper, we test the hypothesis that RGB-D object recognition models can
improve on state-of-the-art RGB models and propose a deep learning architecture that leverages the added depth
information. Our proposed architecture encodes depth images into a geocentric embedding and makes use of two
independent processing streams for the RGB and depth images. We train multiple models to control for and
validate the effects of the added depth information. Our best model achieved an accuracy of 70.1% on a dataset
of 51 classes.

1. INTRODUCTION

1.1 Motivation
The extraction of a high-level understanding of three-
dimensional (3D) images is a fundamental problem in
the field of computer vision. 3D image understanding
has applications in areas including remote sensing,
mapping, monitoring, autonomous-driving,
virtual/augmented reality, and robotics [1]. Thus,
models which can autonomously extract high-level
information (such as recognizing objects) from 3D
images are in high demand.

In past decades, similar to 2D computer vision, research
on 3D computer vision often employed classic machine
learning methods like Support Vector Machines and
Random Forests. [2]. However, with the increase of
computational power and availability of data, deep
learning has allowed for rapid development in both 2D
and 3D computer vision [3].

Our focus is on 3D sensed data in the form of so called
RGB-D images. The format consists of a pair of images;
a standard RGB image and a depth image. Depth images
provide additional information about the 3D structure of
the scene, and unlike RGB images, are invariant to
lighting and are particularly useful in background
separation [4].

1.2 Related Works
One approach to the problem is to simply stack the RGB
and depth images generating a 4-channel image and
employ existing Convolutional Neural Network (CNN)
architectures. However, Gupta et. al. [5] found that this
approach does not make the most use of the geometric
information encoded in the depth image.

In one of the earlier papers on the subject, Socher et. al.
[6] proposed a CNN-RNN architecture in which CNNs
extract low-level translation-invariant features for RGB
and depth images independently, then RNNs generate
high-level global features. Eitel et. al. [7] used a similar

67

approach in which two different CNNs process the RGB
and depth images independently, then fuse the output
after passing it through two fully connected layers.

1.3 Problem Definition
In this paper, we aim to build an RGB-D deep learning
object recognition model which makes good use of the
depth information and outperforms RGB-only models.
As input, the model takes an RGB-Depth image pair,
and outputs a prediction of the class of the object
present in the image. Through this process, we aim to
develop an understanding of 3-dimensional images in
the context of deep learning and gain insights that pave
the way for further improvement in future research.

2. METHODOLOGY

2.1 Dataset
We used the Washington University RGB-D dataset
containing images of 300 common household objects
organized into 51 categories. The dataset was collected
using a Kinect-style 3D camera. The dataset is 84 GB
large and contains 207,920 RGB-D images [8].

2.2 HHA Geocentric Encoding of Depth
Information

In 2014, Gupta et. al [5] proposed a geocentric
embedding of depth images which transforms single-
channel depth images into a 3-channel representation.
This representation encodes horizontal disparity, height
above ground, and angle with gravity for each pixel
(referred to as the HHA embedding). In their paper, they
demonstrated that extraction of features from HHA
images using CNNs learned stronger representations
and achieved higher performance than raw depth
images.

Figure 1: A sample image from the dataset

2.3 Proposed Architecture
We proposed and validated a deep learning architecture
based on two independent CNN processing streams for
the RGB and depth images, respectively. In the RGB
processing stream, we make use of the proven ResNet50
2D CNN model to generate an RGB feature vector [9].
The depth image is transformed to the HHA geocentric
encoding, then passed through a CNN feature extractor
that we built from scratch. The RGB and depth feature
vectors are then fused and passed through two fully
connected layers before generating a class prediction.

Figure 2: The architecture of RGB/Raw depth model

2.4 Evaluation
We trained four different models using different
combinations of RGB, raw depth, and HHA to isolate
for the impact of each. Namely, we built and trained
depth-only, HHA-only, RGB-Depth, and RGB-HHA
models on our dataset.

We split the dataset into a training and test set by
dedicating one object instance to the test set and leaving
the rest for training. This was done to prevent data
leakage since adjacent frames of the same object
instance will look very similar.

68

3. RESULTS AND DISCUSSION

First, our results demonstrate that a deep learning model
can achieve reasonable accuracy in recognizing objects
in depth-only images. Our raw depth model achieved a
test accuracy of 40.5%. Thus, depth images have utility
beyond just providing auxiliary information to RGB
images.

Table 1: Model performances

Model Accuracy

Depth-Only 40.5%

HHA-only 48.0%

RGB w/ Raw Depth 54.7%

RGB w/ HHA 70.1%

Second, our results confirm that the HHA geocentric
representation of depth images improves performance
in deep learning object recognition models. The HHA-
only model achieved notably higher accuracy than the
raw depth model at 48.0%. The effect is even larger in
the combined RGB and depth models. While RGB with
raw depth achieved 54.7% accuracy, RGB with HHA
achieved 70.1%. Thus, representing depth information
in the HHA embedding improves performance for this
model architecture.

Figure 3: Confusion matrix of the RGB-HHA model

Finally, we examined the learned weights of the RGB-
Depth models to further assess how useful the depth
information was to the models. We did this by looking
at the weights of the dense layer following the
concatenated feature vector, and compared the weights
associated with the RGB feature vector and the depth

feature vector. We found the magnitudes of weights
associated with depth information to be comparable to
that of RGB information, especially when encoded in
HHA.
Table 2: Statistics of learned weights

Statistic RGB w/ Raw Depth RGB w/ HHA

 RGB Raw Depth RGB HHA

Mean Abs.
Value

0.0449 0.0243 0.0233 0.0234

Max 0.8412 0.1694 0.0467 0.0467

Min -0.9376 -0.1694 -0.0467 -0.0467

Std. Dev. 0.0712 0.0286 0.0269 0.0270

4. CONCLUSIONS AND FUTURE WORK

With the utility of depth information in object
recognition models demonstrated, future research may
be directed at optimizing performance further and
pursuing the maximum possible accuracy. Our
architecture makes use of two independent processing
streams for the RGB and depth images; perhaps an
architecture where information from the opposite
stream is allowed to gradually seep in before the final
fusion would result in a model that is more aware of the
“full picture.” Another promising application of depth
information in computer vision is object segmentation,
where 3-dimensional structure is especially important.
This would be an interesting avenue for further research.

5. REFERENCES

[1] S. Zia, B. Yuksel, D. Yuret and Y. Yemez, "RGB-D Object Recognition Using Deep Convolutional

Neural Networks," IEEE International Conference on Computer Vision Workshops (ICCVW), 2017.
[2] D. Griffiths and J. Boehm, "A Review on Deep Learning Techniques for 3D Sensed Data

Classification," Remote Sensing, vol. 11, no. 12, p. 1499, 2019.
[3] Y. Gao, F. Sohel, M. Bennamoun, M. Lu and J. Wan, "Rotational Projection Statistics for 3D Local

Surface Description and Object Recognition," International Journal of Computer Vision, vol. 105, no. 1,
pp. 63-86, 2013.

[4] Y. LeCun, "Deep learning & convolutional networks," IEEE Hot Chips 27 Symposium (HCS), 2015.
[5] S. Gupta, R. Girshick, P. Arbeláez and J. Malik, "Learning Rich Features from RGB-D Images for

Object Detection and Segmentation," Computer Vision – ECCV 2014, pp. 345-360, 2014.
[6] R. Socher, B. Huval, B. Bhat, C. D. Manning and A. Y. Ng, "Convolutional-Recursive Deep Learning

for 3D Object Classification," Proceedings of the 25th International Conference on Neural Information
Processing Systems, 2012.

[7] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller and W. Burgard, "Multimodal deep learning for
robust RGB-D object recognition," IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015.

[8] K. Lai, L. Bo, X. Ren and D. Fox, "A large-scale hierarchical multi-view RGB-D object dataset," IEEE
International Conference on Robotics and Automation, 2011.

[9] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly and N. Houlsby, "Big Transfer (BiT):
General Visual Representation Learning," 2020.

Our work can be found at:
https://github.com/Awni00/3d-object-classification

69

Video Summarization Tool
T. J. Hu1, Bhavini Rathod2, Nick Pysklywec3, Mihir Kadiya4, Andy Huang5

Ad Astra, Western AI
Western University, 1151 Richmond St. London ON, N6A 3K7 Canada.

1 e-mail: junruihu@gmail.com
2 e-mail: brathod@uwo.ca
3 e-mail: npysklyw@uwo.ca
4 e-mail: mkadiya@uwo.ca

5 e-mail: andy0207huang@gmail.ca

Abstract: The ultimate goal of this work is to develop a video summarization search engine that allows users to
identify an object in a video stream in a way that is analogous to finding a word in a text document. Detectron2,
a library for real time object detection and segmentation, is used to sample videos to extract what objects
appear in individual frames. This metadata is saved as high-dimensional vector embeddings using BERT. Topic
modeling is then run on the associated subtitles to automatically infer video-chapters to further aid semantic
search. Our model shows promising 80% detection confidence after training on the initial annotated images.
The model can be implemented in research across multiple disciplines to increase efficiency when analyzing
long video footages. Future work will enable our model to learn online so that users can easily label novel
objects and activities for the model to learn.

1. INTRODUCTION

1.1 Motivation

We are currently in an information age, where
vast amounts of data continue being produced. A lot
of that information is in the form of video data.
According to a recent Cisco study, by 2021, 82% of
consumer internet traffic will be video [1]. This is
not a surprise as a lot of the video traffic that we
consume from popular video apps like TikTok to
large video search engines like YouTube are
omnipresent in today’s digital age.

Video data has the unique property that it has to
be viewed in order for visual information to be
extracted from it. For humans to view thousands of
hours of video data can be time consuming to say

the least. Our team is looking to find a way to
automate the process of finding information in
videos. We have built an automated search tool that
summarizes video content. This work can be useful
for a lot of applications to objects in a video to find
it’s location (timestamp).

A video search tool that can summarize the video
feeds of “lengthy-videos” to save time and promote
efficiency.

The motivation of creating this web application was
to implement a solution to a problem that can
combine. Our current application uses analysis of
image segmentation to suggest video locations to
where the object of interest is, and allows for search
& highlighting of appearances within the video

70

1.2 Related Works

Examination of current literature was done, and
there existed many different approaches to be taken
when considering video summarization. In one
instance, researchers converted videos and
transcripts to a semantic space, and clustering
techniques were applied to this data [2]. This
method was able to get a 58% average score relative
to manual video summaries.

In another case, an algorithm was developed to
analyze the difference between two frames of a
video, and by doing this determine “key frames” of
a video [3].

1.3 Problem Definition

We are trying to address the problem of video
search tools that can identify an object of interest in
a video, and searching video data in an automated
fashion. This requires object detection analysis and
being able to highlight or segment an object from an
image frame in the video. In our application, we
touched on creating customized objects and trained
the data Detectron’s Machine learning model.

2. METHODOLOGY

To summarize videos object recognition was first
considered. Rather than develop a model for this,
the PyTorch-based modular detection library
Detectron2 (Facebook Research)[4] was used.
Detectron2 provides capability for object detection
in an image, furthermore segmentation. The idea
was that this becomes useful for determining the
given objects in an image.

To make use of Detectron2, we divided videos into
frames of a frame rate at 1 fps (1 frame cut per
second of video). Each frame was then sent to
Detectron2, and the various objects in that frame
were recorded along with this current frame
number. After analyzing each frame of a video, this
recorded frame and object data was sent to the

frontend UI interface as a JSON and parsed to be
shown as timestamps to the user.

This remains the basic pipeline for operation,
furthermore, Detectron2 also provides functionality
for adding custom objects to it. Custom objects
were added to Detectron2 for a greater expansion of
domain specific objects. Images used to train
custom objects were scraped from google images
using a bulk image downloader chrome extension.
For 50 of scraped images annotated to Detectron2
for training, the model yielded 80% accuracy for
testing object recognition for the custom item.

Figure 1: A custom image being identified by Detectron2

3. RESULTS AND DISCUSSION

We would like to validate our work by comparing
our application’s detection mechanism to humans
who will mark the locations of objects and record
their timestamps as our gold standard marker.

Figure 2: Total loss iterated over 300 epochs

71

The plotted graph displays the total loss of the
model for a custom object in our model over a
series of epochs. The Detectron2 model did very
well at adding custom objects to itself, even with a
“small” amount of train images (50). These results
indicate that training of Detectron2 onto more
images will generate a more accurate object
classifier. Some uncertainty appeared however with
some objects when placement in a given was not
two dimensional.

For instance, some objects appeared facing into the
photo, but since many google images for training
were facing horizontal or vertical, Detectron2 had
issues classifying these objects sometimes. Another
issue was with misclassification, as some objects
were being misclassified as a vegetable, but were a
vehicle. The given vehicles were boats, and the
vegetable was broccoli, so the issue likely is
associated with the polygon shape that Detectron2
uses for recognition.

4. CONCLUSIONS AND FUTURE WORK

Overall, the attempted solution aims to solve the
problem of detecting objects from a video using
NLP topical analysis provided by Detectron2. An
automatic video search tool such as this has a
variety of applications in many different industries
such as surveillance, custom object detection and
many more.

In a given video file, there could be a series of
frames that detects a certain object, however, some
frames in the range can be blurry or distorted which
Detectron2 does not recognise and therefore the
algorithm splits the object into two, even though
they should be one object. One of the ways to
address this issue would be to create a smooth
function that can predict the gaps in a series of
frames which are blurry or distorted.

The method of data collection for new object
addition is cumbersome, so another priority that

remains is to automate this. This can be done by
exploring use of the Toronto Data Platform which
assists human annotation, or by developing a tool.
Additionally, fixing the issues pertaining image
orientation in 2D space can be fixed using various
data augmentation techniques.

REFERENCES

[1] ADG Creative (2020) Available:
https://www.adgcreative.net/resources/by-20
21-82-of-consumer-internet-traffic-will-be-v
ideo-are-we-ready/

[2] M. Otani, Y. Nakashima, E. Rahtu, J. Heikkilȁ,
N. Yokoya, “Video Summarization using
Deep Semantic Features, ” Lecture Notes in
Computer Science , pp. 361-377 (2017).
[Online]. Available:
https://arxiv.org/abs/1609.08758

[3] C. Gianluigi, S. Raimondo, “An innovative
algorithm for key frame extraction in video
summarization,” Journal of Real-Time
Image Processing, vol. 1, no. 1, pp. 69 - 88
(2006). [Online]. Available:
https://doi.org/10.1007/s11554-006-0001-1

[4] Y. Wu, A. Kirillov, F. Massa, W.Y Lo, R.
Girshick, Detectron2, (2019). Available:
https://github.com/facebookresearch/detectr
on2

72

Voiceprint Identification

Alastair Noble, Harley Latsky, Eli James, Alex Beamish

QMIND – Queen’s AI Hub
Queen’s University, Kingston, Ontario K7L 3N6, Canada. Queen’s

1-email alastair.noble@queensu.ca
2- email harley.latsky@queensu.ca

3-email 19ewj@queensu.ca
4-email 19akb3@queensu.ca

Abstract: Voiceprint recognition is the process by which a trained model identifies the specific individual who
is speaking arbitrary phrases. Speaker recognition is distinct from speech recognition, which involves
converting spoken words to text, but these two types of systems are often combined in practice, as is the case
with virtual assistants such as Siri, Alexa and Google Assistant. Currently, largely due to the training
approaches used, many speaker recognition models can only identify speakers when a specific phrase is uttered
by the speaker. In an attempt to address this issue, and to create a complete voiceprint recognition system, we
have developed a multi-faceted software application in python. The application includes a neural network, a set
of features that allow for flexible training on multiple words and phrases, and a user-friendly GUI. Our
application can identify speakers with roughly 80% accuracy, although we are currently working to improve
that. We plan on continuing to experiment with different approaches for training, with the goal of maximizing
identification accuracy even when the speaker uses novel words and phrases. Future uses of our software could
include audio captioning/transcription, and authentication for security or customer service purposes.

1. INTRODUCTION
1.1 Motivation
Accurate voiceprint recognition systems are becoming
increasingly important to develop more accessible and
secure technology [1]. Voiceprint recognition models
are used in areas such as voice assistants, two-step
authentication security systems and customer service
[2]. Two areas in which existing voiceprint recognition
systems could improve are their ability to accurately
differentiate between two speakers and their ability to
accurately identify whether it is the same person
speaking but under different conditions. These systems
identify more than just speech itself; they are also
taking background noise, echoes, and other sound
features into account, all while constrained by the
hardware upon which the sound source is recorded.

We sought to build a voiceprint recognition model
which could accurately differentiate between speakers
in real time.

1.2 Related Works
In the past, the most common approaches to voiceprint
recognition and verification models were Gaussian
Mixture Models (GMMs) and hidden Markov Models
(HMMs). The more common approach currently, and
the one we developed, was using a convolutional
neural network (CNN). The advantages and
disadvantages of these approaches can be summarized
by Mingyu Ma’s paper [3], or by this Microsoft
Research Paper [4] from 2014. One advantage of using
a CNN is that it promotes more flexibility in handling
the natural variability in speech. For a few years, the
CNN has been known to be an effective approach for
identifying and verifying voice using machine
learning.

1.3 Problem Definition
Using a CNN, we sought to build a model which could
accurately identify speakers in real time using multi-
phrase voiceprint recognition with the aim of
discovering improved ways of collecting and cleaning

73

training data to maximize the accuracy of
identification.

2. METHODOLOGY
2.1 Prototype
In building a multi-phrase voiceprint recognition
system, our team started by implementing a single-
phrase system. This initial system was modelled after
Jurgen Arias’s work on voice classification, and used
Librosa, Keras (sequential neural network), and
MFCCs (Arias, 2019). To fully test our initial single
voice classification system, we used data from an
open-source Alexa dataset containing 86 users saying
the word Alexa 4 times. Our group added data of
ourselves saying Alexa 4 times to add to this data and
ensure that the model is working through testing.

2.2 Data Processing
To convert audio to data that can be understood by the
model, our group split the original audio file into 40
different audio chunks. For each chunk, a coefficient,
namely a Mel-Frequency Cepstrum Coefficient
(MFCC) was created. This MFCC was generated
based on the frequency of the audio chunk put through
a Fourier transform to bias the coefficient towards
small changes in frequency. This created a 40 long
decimal array that was fed into the model.

Before the training of the model, the data needed to be
processed in order to avoid overfitting and ensure that
the model focused on the correct indicators. An
example of a situation that we wanted the model to
avoid paying attention to is the time in-between the
start of the recording and the first sound. To prevent
the model from focusing on this, we utilized Librosa to
add a hamming window to our data, which softened
out large changes in audio. We also used a noise
removal formula to help limit the bias of background
noise from different microphones. Using the single
phrase system, our team tried to increase the efficiency
of the model and create code that can be expanded
upon with future iterations of the model.

2.3 Final Design

After obtaining satisfactory results with the single
phrase system, our team split up to build out as many
features as possible for the final design. A data
collection system that works with the previous model
requires sentences to be split up into words. Our team
used PyDub (the python library) to analyze full
sentences and return separate audio files of all the
individual words used. This relied on the silences in-
between words and greatly sped up the data collection
process. Next, we increased the accuracy of the model
by iterating on the model. For example, the audio
chunk number of 24 was determined a better indicator
than the original 40. The last task was to bring all these
pieces together into an application with a simple UI.
The most significant feature of the UI is to test the
model live using live input from a microphone while
continually updating the UI.

3. RESULTS AND DISCUSSION

We trained the final model on 4 subjects using 35
seconds of speech data per subject. We broke the data
up into between 60 and 70 audio chunks based on how
fast the subject spoke. We evaluated the model in 2
ways: using prerecorded test data of each subject, and
with live input during a meeting between the 4
subjects. The model had 88% accuracy on the test data.
It averaged 80% accuracy during the live input,
however it varied with different conversations. During
presentations, when subjects spoke one at a time
without interruption, the model reached 88% accuracy,
however during regular meetings where there was a lot
of back and forth, the accuracy averaged 72%. The
lower accuracy during the live input was expected for
a few reasons. First, conversations between subjects
often have audio input from more than one party, in
the form of background noise or talking over each
other. And second, we had to collect the audio over set
intervals to update the GUI, so we had to balance the
speed of the prediction in the GUI with the quality of
the audio chunks we collected.

We chose to only use 35 seconds of audio data for
training because we prioritized usability during

74

meetings and presentations, and we wanted to be able
to easily add subjects to the training set during the
demonstration at CUCAI 2021. For different
applications with more subjects or where higher
accuracy is required, more training data should be used
so that the model has more data to learn the unique
identifiers of each subject.

A limitation we had was that we were displaying the
predictions live. This meant we had to cut audio into
intervals before breaking it up naturally, so we often
had words cut in half at the beginning and end of
intervals. For different applications, for example
transcription, the audio would be broken up more
naturally after it was all recorded, and would have
better accuracy.

4. CONCLUSIONS AND FUTURE WORK

The progression from a single phrase model to a multi-
phrase model went smoothly, and the final model
performed well considering the limited amount of
speech data that was used to train it. In the final stages
of development, various software components were
successfully merged into a usable application. As
outlined in the previous section, there are certain
limitations on what the final model can do, and more
robust testing under various conditions is still required.
Nonetheless, results so far have been very promising,
and there do not appear to be any insurmountable
barriers to further improvement of the model. Future
work could include continuing to search for better
phrases to train the model on, and continuing to
optimize the identification accuracy through tuning of
the model parameters.

Many of the major applications of voice identification
technology are in authentication for security and
customer service purposes, and in audio captioning. In
the security and customer service space, our
application could be used in conjunction with other
methods to allow for real-time, continuous verification
of identity while a speaker is speaking. Our application
could also be used in digital audio captioning to
identify a speaker across multiple audio files.
Ultimately, speaker identification is a very general

problem, so our application could be useful in many
different contexts.

REFERENCES

[1] S.M. Schwartz (2017). Multi-Agent Path
Planning for Lo-cating a Radiating Source in
an Unknown Environment.Master’s Thesis,
Department of Mechanical Engineer-ing,
Embry-Riddle Aeronautical University.

[2] M. Vrigkas, C, Nikou, and I.
Kakadiaris, ”A Review of HumanActivity
Recognition Methods”, Front. Robot. AI, 16
November 2015.

[3] M. Alzahrani, S. Kammoun, ”Human
Activity Recognition: Chal-lenges and
Process Stages”,International Journal of
Innovative Re-search in Computer and
Communication Engineering, Vol. 4, Issue
5,May 2016.

[4] C. McDaniel, S. Quinn, ”Developing a
Start-to-Finish Pipeline forAccelerometer-
Based Activity Recognition Using Long
Short-TermMemory Recurrent Neural
Networks”,PROC. OF THE 17th PYTHONIN
SCIENCE CONF, 2018

[5] J. Arias, “Voice Classification,” GitHub, 07-
Dec-2019. [Online]. Available:
https://github.com/jurgenarias/Portfolio/tree/ma
ster/Voice%20Classification. [Accessed: 17-
Mar-2021].

75

https://github.com/jurgenarias/Portfolio/tree/master/Voice%20Classification
https://github.com/jurgenarias/Portfolio/tree/master/Voice%20Classification

