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Abstract: The gradual growth of solid waste in the urban area has been and is becoming a great concern for 
human health, and could result in environmental pollution and may be hazardous to humanity if not properly 
disposed. With that being said, an advanced waste management system is necessary to manage a variety of 
waste materials. The most important step of waste management is the separation of the waste into their 
designated categories. This process is usually done by manually hand-picking and sorting them into their 
designated bins. In order to save time and simplify the process, Queen’s Waste Wizard introduces a waste 
classification computer vision model, which is developed using a pre-trained residual net (EfficientNet-B3) 
Convolutional Neural Network model, a machine learning tool. The model is used to classify waste into 
different groups such as Blue Recycling, Grey Recycling, Landfill and Organics. Our first proposed system 
was able to achieve an accuracy of 98% on the validation dataset. An overall 80% accuracy was achieved on 
our testing dataset with more realistic examples with background noise. This method is expected to be faster, by 
implementing the proposed system without or little human involvement. 
 
 

1. INTRODUCTION 
 

1.1 Motivation  
 

Globally, annual solid waste is expected to reach 2.2 
billion tons by 2025 [1]. Improper waste management 
may lead to huge economic, environmental, and public 
health issues. As a result, there is a clear need for 
proper waste management within public spaces where 
a large proportion of waste is improperly discarded. 
 
In 2016, the waste diversion rate of Queen’s 
University was measured to be 43.23%, however, over 
85% of the current waste stream was composed of 
items that can be diverted from landfills [2]. While 
Queen’s University has already deployed a waste 
lookup application, this tool requires a high amount of 
user input. In contrast, computer vision models only 
require the user to take a single image of the waste 
item for classification. This type of application may 

help increase the waste diversion rate on campus by 
reducing the amount of misclassified waste. 
 
While there are existing computer vision models for 
waste classification, there is limited use of such 
models within public spaces. Many models including 
those using AlexNet [3] and Inception-ResNet [4] have 
been trained for waste classification, however, these 
models are large and require a large number of 
parameters to achieve high accuracy. Consequently, 
many of these models are unable to run on easily 
deployable machines such as tablets. 
 
1.2 Related Works  
 
According to a paper published in 2019 by Quoc V. Le 
and Mingxing Tan from Cornell University, 
EfficientNet is a continuous family of models created 
by scaling each dimension with a fixed set of scaling 
coefficients. As a result, the depth, width and 
resolution of each variant of the EfficientNet models 
should be hand-picked to determine the best accuracy. 
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For instance, in a model used to classify Stanford 
Dogs, the model EfficientNet B0 was used. It has been 
shown in the study that transfer learning result is better 
for increased resolution if input images remain small. 
However, when training EfficientNet on smaller 
datasets, the model faces a risk of overfitting its data. 
Hence, data augmentation and pre-processing are 
important for EfficientNet. In other words, a useful tip 
is that in some cases, it might be beneficial to unfreeze 
only a portion of the layers rather than all, as this 
makes fine-tuning much faster when using larger 
models like B7. Another aspect to keep in mind is that 
larger variants of EfficientNet do no guarantee 
improved performance, especially for tasks with little 
data and few classes. In such a case, the larger variant 
of EfficientNet chosen, the harder it is to tune 
hyperparameters. In conclusion, it’s important that the 
developers take time and experiment with all variants 
and play around with the layers in order to receive the 
best accuracy. 
 
1.3 Problem Definition 
 
The use of EfficientNet for waste classification may be 
ideal in public spaces where models with larger and 
more complex architectures are unable to run on small 
devices. Models such as ResNet scale up 
Convolutional Neural Networks (ConvNets) by adding 
more layers, and by scaling by depth [5]. However, it 
is not known if this is the most efficient scaling 
algorithm as previously, the process of scaling up 
ConvNets was poorly understood. This creates a 
problem in situations where models require a smaller 
size, yet still require high accuracy. 
 
EfficientNet uses a new method of scaling to achieve 
better accuracy and efficiency greater than most 
traditional ConvNets [5]. Unlike conventional 
approaches to model scaling, where network 
dimensions are arbitrarily scaled, EfficientNet scales 
each dimension with a fixed set of scaling coefficients 
[5]. This results in a higher level of accuracy and 
efficiency. Furthermore, EfficientNet has several 
different versions along with EfficientNetLite versions 
that are specifically designed to run on mobile devices 
[5]. 
 
For waste classification, it is necessary for a model to 
classify waste quickly and accurately. Furthermore, 
when deployed in a public space, it is also necessary 
for the model to run on devices with limited storage 

capacity. Due to the high efficiency and accuracy of 
the EfficientNet, it is an optimal computer vision 
model to retrain for the purpose of waste classification. 
 

2. METHODOLOGY 
 
2.1 Training Data 
 
The goal of our model is to successfully classify 
common waste items into four different categories. 
These categories are blue recycling (glass, plastic, and 
metal), grey recycling (paper and cardboard), along 
with organics, and landfill. These were based off the 
sorting categories in Kingston Ontario, as this is the 
preliminary location the model will be deployed. 
Using numerous public databases online, a collection 
of 4637 images was established for training data, 
summarized in Table 1. The quantity of each category 
was modified over time to reflect the difficulty the 
model had of classifying that category.  
 
Table 1: Summary of Training Data 

Category Image Quantity 
Blue Recycling 889 
Landfill 1046 
Organic 2301 
Grey Recycling 404 
Total  4637 

2.2 Model Framework  
 
To maximize the accuracy of the model, extensive 
research was conducted to determine the most 
appropriate framework. EfficientNet was found to be 
the most appropriate for this application as it can 
achieve high accuracy on the ImageNet dataset, while 
minimizing the number of parameters. This is very 
important for this application as the model will be run 
on an android tablet with limited computing power and 
must be capable of classifying an image in under a 
second. EfficientNet models between B0 and B5 were 
tested on our data, and it was found that the increase in 
input size from B0 to B3 caused significant 
improvements in accuracy, but further scaling had 
limited improvements. It was therefore determined that 
using the EfficientNet B3 framework using pretrained 
weights from the ImageNet dataset was the most 
appropriate baseline model. To tailor the model to this 
application, an average pooling layer, along with batch 
normalization, dropout, and fully connected layers 
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were added on top of EfficientNet. A summary of the 
current model can be seen in Figure 1.  

 
Figure 1: Framework of image classification model 

 
2.3 Training 

 
The model was then trained for 20 epochs, until the 
validation set accuracy plateaued. to increase the size 
of the training dataset, data augmentation was used 
including rotating, zooming, shifting and flipping the 
preliminary training images. The model was trained in 
mini batches of 128 images, and learning rate decay 
was used to maximize the validation set accuracy. 
Before training, 10% of the data was set aside as the 
validation set which was used to measure the progress 
of the training. The accuracy and loss function of the 
training and validation sets are seen below in Figure 2. 

 
Figure 2 Accuracy and Loss function of training and validation data 

As the training and validation set are not entirely 
representative of actual images seen by the model was 
deployed, a test set was developed to evaluate the 
model more accurately. Each of the four team 
members took approximately 100 images of common 
waste items around their home, in situations more 
representative of what the model will be expected to 
classify. These were then run through the model to 
predict how accurately the system would perform 
when deployed. 
 

3. RESULTS AND DISCUSSION 
By training the model shown above for 20 epochs, a 
peak validation set accuracy of 97% was achieved. The 
predicted categories compared to the true categories of 
the validation set for each of the categories is visualized 
in the confusion matrix in Figure 3.  

 
Figure 3: Normalized confusion matrix of validation set 

The testing data collected by the team was then run 
through the model, producing an accuracy of 80%. This 
is likely representative of the accuracy the model 
achieves when deployed around campus, indicating that 
there is still further work to be done. The predicted 
categories compared to the true categories of the test set 
for each of the categories is visualized in the confusion 
matrix in Figure 4. 

 
Figure 4: Normalized confusion matrix of test set 
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Testing revealed that there was a significant drop in 
accuracy between the validation set and test set. This 
means that the data used in the training and validation 
sets are not entirely representative of the testing set, 
which explains the drop in accuracy. When examining 
the training data, the majority of the photos are taken 
with white backgrounds, good lighting, and with the 
object taking up the majority of the frame. This is not 
the case with the testing data where the background is 
often a significant part of the image, taken in less than 
ideal lighting conditions. To improve the performance 
of the model on representative images, the training set 
would need to be further expanded, or the quality of the 
representative images would need to be improved by 
reducing background and lighting effects.  
 
 

4. CONCLUSIONS AND FUTURE WORK 
 
Recycling can be too easily contaminated when people 
do not ensure their waste is placed in the proper bin. 
This can be extremely damaging to the recycling 
initiatives and efficiencies. This project has 
accomplished the training and deployment of a 
convolutional neural network to properly classify 
waste items into their respective categories: blue 
recycling, grey recycling, landfill, and organic. This 
was done using transfer learning from the EfficientNet 
model which has been converted into a TensorflowLite 
model to be deployed locally on an Android tablet. 
This model will be used on Queen’s campus to help 
Queen’s students recycle more responsibly.  
 
The model can properly classify common waste items 
with a 98% accuracy on the validation set. Even with 
background noise, activity in the background of 
images, that is commonly found in realistic 
deployment of software such as this one, the model is 
still able to perform with 80% accuracy. 
 
Currently the development on the Android application 
is ongoing. Although the model is completely 
functional in the Android application the user 
experience is still being improved for ease of use to 
Queen’s students. Along with improved UX additional 
resources are being implemented into the app so that in 
conjunction with the model the team can ensure 
students have assets easily accessible to completely 
responsibly dispose of their waste items. One of the 
major additions to the application is common 
exceptions with the waste disposal instructions. On 

campus certain products are specifically designed to be 
compostable even though visually entire plastic and 
similar cases. This is being done with location specific 
items so that managers of this software can easily set 
the location of the tablet to provide location specific 
instructions and suggestions.  
 
Future steps also include the secure installation of 
Android tablets. To ensure the security of the tablets 
they are being installed with brackets at the most 
popular locations on campus. This way the model can 
be delivered with ease of use and peace of mind from 
any vandalism or theft.  
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Abstract: As diabetes prevalence continues to accelerate globally, methods to better monitor diabetes 
progression are critical in enabling effective preventative action and reducing the burden on local healthcare 
systems. Current prognostic models often prioritize between interpretability, by way of stratification on a small 
set of lab values, and predictive accuracy using deep learning methods on high dimensional data. The objective 
of this study is to develop a wholistic diabetes risk model that has strong predictive ability and maintains 
interpretability. Recurrent neural network models were developed on rich EMR data to predict the onset of 10 
diabetes-related complications and time series forecasting of six clinically relevant lab tests was used for risk 
stratification following American Diabetes Association clinical guidelines. We achieved AUC scores greater 
than 85 for 5 out of ten complication onset models, while lab value forecasting for risk stratification using 
LSTM and ARIMA models achieved satisfactory RMSE values. In combination, our models provide a 
comprehensive understanding of the relative risk level for individuals with diabetes.   
 
 

1. INTRODUCTION 

1.1 Motivation  
 
The global diabetes burden is expected to increase 
from 463 million people in 2019 to 578 million people 
by 2030 with developed countries seeing the greatest 
increase in prevalence rates [1]. In Canada, diabetes 
prevalence is expected to increase from 11,232,300 in 
2020 to 13.6 million or 32% of all Canadians by 2030. 
Moreover, the increase in diabetes prevalence presents 
a significant burden on the health-care system. With 
the direct cost to the Canadian healthcare system 
expected to increase from 3.8 billion in 2020 to 4.9 
billion by 2030 [2].  
 
Thus, it is critical to develop improved monitoring 
methods to track the overall health status of those 
living with diabetes to reduce the diabetes burden on 
the healthcare system and to ensure preventative 
action can occur before development of life-
threatening complications.  
 

1.2 Related Works  
 
Due to the complex and diverse pathophysiology of 
diabetes, the American Diabetes Association (ADA) 
recommends individualized treatment and medication 
plans [3]. As such several studies have focused on 
personalizing treatment by scoring, or stratifying, the 
relative health of diabetic patients using clinical test 
values. These stratification methods allow for better 
resource allocation, help clinicians better monitor the 
relative health of their patients and have shown to 
improve overall diabetes outcomes [4].  
 
More recently, several prognostic machine learning 
models have been developed alongside the increased 
adoption of electronic medical records (EMR) systems 
by healthcare providers. Excellent in finding statistical 
patterns in rich data, Ljubic et. al. demonstrated the 
potential for deep learning models trained on EMR 
data for Alzheimer’s onset prediction. To capture the 
richness of EMR data they trained separate LSTM 
models on diagnoses, lab tests, and drug domains. The 
drug and lab test domains produced the best results 
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with 0.985 and 0.986 AUPRC respectively while the 
diagnoses domain achieved 0.651 AUPRC [5]. 
 
1.3 Problem Definition 
 
The complex nature of diabetes and related 
complications make it difficult to quantify a patient’s 
diabetic risk level. Earlier approaches attempt to 
quantify risk by stratifying diabetic patients on a small 
subset of well-controlled clinically relevant lab tests. 
While stratification by this means is well adopted due 
to increased interpretability and practicality in a 
clinical environment, it severely under-utilizes the 
wealth of data available in today’s EMRs.  
 
On the other hand, recent deep learning models have 
taken advantage of high-dimensional data sources and 
have shown high prediction accuracy for prognostic 
disease models. However, due to the ‘black box’ 
nature of deep learning models and a subsequent lack 
of interpretability, deep learning models have not seen 
wide-spread adoption in a clinical setting.  
 
Our goal is to develop a wholistic risk model for 
diabetic patients that monitors and predicts their 
overall diabetic health using diabetes stratification 
methods while also predicting the onset of diabetes 
related complications using high accuracy machine 
learning models. 
 

2. METHODOLOGY  
2.1  Data 
 
To create a comprehensive risk profile for diabetic 
patients, we developed two time-series models on 
EMR data from the Canadian Primary Care Sentinel 
Surveillance Network (CPCSSN). The CPCSSN 
database is comprised of anonymized clinical 
information from patients presenting with a wide 
variety of diseases and is split into several domains 
such as billing information, patient demographics, lab 
tests and medication [6]. Our first model used the lab 
and exam domains to forecast the values of 6 clinically 
relevant lab tests while our second model used billing, 
demographic, lab, and exam domains to predict the 
onset of diabetes-related complications. Diagnosis’ 
codes were found in the billing domain and were 
represented using International Classification of 
Diseases-Ninth Revision codes (ICD9).  
 
2.2  Diabetes Stratification 

 
Following the American Diabetes Association (ADA) 
clinical guidelines [3], stratification levels were 
calculated for HbA1C, blood pressure (systolic and 
diastolic), high- and low-density lipoproteins and 
triglycerides, and albumin/creatinine ratio lab results. 
Two threshold values for each lab test determined the 
relative stratification level, 1 to 3, of patients where a 
score of 1 represented low values, 2 represented 
normal values, and 3 represented high values. The 
scores for HbA1C, blood pressure, lipids, 
albumin/creatinine ratios and multi-category lipid 
averages were found and summed to generate a final 
risk score.  
 
Given the time series nature of EMR data, ARIMA 
and RNN models were used to forecast the selected lab 
values. The ARIMA model is a widely used statistical 
method for analyzing time series data. The model takes 
three parameters p,d,q where p is the order of the AR 
(autoregressive) term or lag order, d is the differencing 
order, and q is the order of the MA (moving average) 
term respectively. We used the standard parameters of 
p = 5, d = 1, m = 0 for our analysis.  
 
Outliers from the series were removed by only taking 
data that fell within the inter-quartile range for each 
respective feature and 14-day windows were used to 
produce fixed time-series data. Thus 14-day forecasts 
were generated for each feature and re-stratification 
could occur using ADA threshold values. An 80/20 
split was used for the LSTM model and each model 
was trained on an average of 800 samples.  
 
2.3  Complication Prediction 

In our second approach we sought to independently 
predict the onset of 10 diabetes-related complications. 
These complications were angina pectoris, 
atherosclerosis, ischemic heart disease, depressive 
disorder, diabetic nephropathy, diabetic neuropathy, 
diabetic retinopathy, hearing loss, myocardial 
infarction, and peripheral vascular disease. This was 
done using both patient diagnosis data and combined 
lab and exam result data. These sources of information 
provided two approaches which were developed 
separately, with the goal of consolidating the results to 
form a single model with the highest accuracy. In both 
approaches, two deep learning models were employed 
consisting of recurrent neural network (RNN) 
unidirectional LSTM and bidirectional RNN gated 
recurrent unit (GRU) architectures. The complication 
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diagnosis data points were ascertained from the billing 
table via recorded ICD-9 code ranges unique to each 
complication. A negative dataset was also created for 
each positive complication dataset by selecting age and 
gender matched diabetic patients without 
complications. Data were filtered to exclude results 
after the date of complication onset to prevent data 
leak and patients in both positive and negative datasets 
excluded results prior to each patient’s date of diabetes 
onset. Additionally, patients were only included if they 
had at least 4 visits and at most 51 visits. 

For the diagnosis domain, each patient’s data were 
transformed into a one-hot encoded matrix of 
dimensions m x n, where m represented the number of 
rows or unique dates with at least one result and n = 
3397 represented the full range of possible ICD-9 
codes that presented at least 10 times in the data. Thus, 
each matrix element eij had a value of 1 if the patient 
had a diagnosis with an ICD-9 code j on a given date i, 
and a 0 otherwise. 

For the lab and exam domains, the test results were 
filtered to include only 18 selected features, and 
outliers for each test type were removed. Each 
patient’s results were again represented as one-hot 
encoded matrices by binning each test using the 33rd 
and 67th percentile values for each respective feature as 
thresholds resulting in m x n matrices. Again, m 
represented the number of unique dates with one or 
more lab/exam results, and n = 54 represented low, 
medium, high bins for each feature (18 x 3).  

In both approaches, patient’s with less than 50 visits 
were padded with zero vectors until they had 50 rows. 
Singular value decomposition (SVD) was used to 
reduce the dimensionality of input matrices, resulting 
in a final dimensionality of 50 x 50 or 2500 features 

per patient for the diagnosis domain and 18 x 50 or 
900 features per patient for the lab and exam domain. 
Finally, encoded patient timelines were modeled using 
LSTM and bidirectional GRU layers. Softmax 
activation was used to generate onset probabilities. 
Figure 1 shows the complication model diagram. A 
90/10 training/testing split was used and accuracy was 
evaluated using area under the receiver-operator curve 
(AUC) metric for each complication and approach.  

 
3. RESULTS AND DISCUSSION 

 
The 5-1-0 ARIMA model produced good results with 
the systolic and diastolic blood pressure data. For the 
diastolic blood pressure model, a root mean squared 
error of 3.620 mmHg was achieved on a range of 
diastolic blood pressure values between 82.0 mmHg 
and 71.0 mmHg. For the systolic blood pressure data, a 
root mean squared error of 6.264 mmHg was achieved 
on a range of values between 139.0 mmHg and 121.0 
mmHg. The LSTM model produced the best results for 
HbA1C, HDL, LDL, triglycerides, and 
albumin/creatinine ratio with RMSE values of 5.3 (%), 
14.2 (mmol/L), 13.5 (mmol/L), 50.3 (mmol/L), 32.1 
respectively.  

For our diabetes-complication onset models, it was 
found that using the bidirectional GRU model 
architecture yielded higher AUC and accuracy values 
than LSTM models in all cases, leading us to use it 
primarily for model evaluation. A model was 
separately constructed and evaluated for each 
complication and data source, with the exception of the 
diabetic retinopathy model using lab and exam data, 
which lacked a sufficient positive sample size (n < 
1000). The results are summarized in Table 2.  
 

Figure 1: Onset of complication model diagram consisting of: the patient timeline as an input layer, an embedding layer, bidirectional GRU model 
architecture, and a disease risk score as the output layer. 
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The lab and exam data domain produced higher 
accuracies for seven out of the ten complications than 
the diagnosis domain, suggesting that this source of 
data was a better choice for our solution. This finding 
is also consistent with previous works [5]. We also 
found that models using lab and exam data with less 
than 1000 positive patients performed worse with 
AUC scores less than 0.8. This is not a surprising 
finding since many deep learning models typically 
require large training sets for higher accuracies.  

 
Complication 

Diagnosis 
Data AUC 

Lab/Exam 
Data AUC 

Angina pectoris 0.6373 0.9463 

Atherosclerosis 0.6932 0.6249 

ICHD 0.6941 0.9273 

Depressive disorder 0.6714 0.8122 

Nephropathy 0.6865 0.9108 

Neuropathy 0.6970 0.9221 

Retinopathy 0.6824 N/A 

Hearing loss 0.7121 0.6659 

MI 0.6298 0.8701 

PVD 0.5098 0.5201 
Table 1: Results from RNN Bidirectional GRU Models trained on 
the diagnosis and lab and exam domains for complication 
prediction; ICHD: ischemic chronic heart disease; MI: 
Myocardial infarction; PVD: Peripheral Vascular Disease. 

4. CONCLUSIONS AND FUTURE WORK 
 

As global diabetes prevalence continues to rise, 
diabetes monitoring and forecasting models are critical 
for early intervention and prevention of costly 
complications. In this study we set out to develop a 
wholistic diabetes risk model that encapsulates overall 
disease status and diabetes related complication 
development likelihood. We were able to successfully 
make a two-week prediction on six clinically relevant 
lab tests and subsequently calculate stratification levels 
as a general risk score. We expanded on this approach 
by developing separate GRU models for complication 
onset prediction with >0.85 AUC scores for 5 
complications.  
 

Without knowledge of the clinical domain, it is 
difficult to determine which features are of the most 
importance in determining diabetes risk levels. The 
features presented in this study, for both models, were 
found in literature review where data and features 
often differ from study to study. As such, a 
combination of features were selected based on 
frequency and relevancy reported by other researchers. 
To improve model accuracy, better feature selection 
can be achieved with the help of a clinical consultant. 
Specifically, features with high predictive value such 
as cholesterol or Alkaline Phosphatase in serum were 
excluded due to a lack of references to these features 
in the literature.  
 
In addition, combining the diabetes related 
complication models trained on diagnoses data and lab 
data has been shown to improve overall model 
accuracy [5]. An ensemble model is proposed where 
model inputs would include complication onset 
probabilities from individual GRU models. Moreover, 
an ensemble model allows for greater domain usage as 
patient demographic data such as age, gender, and risk 
factors can be included as model inputs, providing 
even greater predictability and interpretability. 
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Abstract: As major automotive companies continue to incorporate new forms of automation into their fleet of 
vehicles, one of the major tasks that remains is perfecting self-driving capabilities on highways. The goal of this 
project is to use a TurtleBot and the sensors that are provided on the robot to simulate various aspects of an 
autonomous highway. We used Gazebo to facilitate testing on the TurtleBot as we developed a multitude of 
scripts to recognize lanes, adjust steering and speed, scan for other robots, and remain in the center of the lane. 
The robot is also able to recognize if there is another robot in its field of view through both a laser scan and an 
image recognition model to match the speed of another robot in front of it.  
 

 
1. INTRODUCTION 

 
1.1 Motivation  
It is evident that our society is currently on the brink of 
the next transportation revolution, where autonomous 
vehicles are becoming more prevalent on the roads. 
Due to this increasing popularity, high-quality data 
sets and continuously evolving algorithms are steadily 
improving the frameworks of autonomous driving. 
These systems are optimized in the hopes to reduce 
crashes, pollution and traffic jams while making 
autonomous transportation attainable by all. Given this 
exponential rise in autonomous driving and 
considering the numerous benefits of these systems, 
our team found autonomous highway driving to be a 
compelling topic to study. 
 

1.2 Related Works 
To achieve smart cruise control as a step towards 
autonomous driving the first step is to detect the lanes 
on the road. The traditional approach is to use 
computer vision techniques without machine learning. 
This approach as described in “A Precise Lane 
Detection Algorithm Based on Top View Image 
Transformation and Least-Square Approaches” [1]  

 
involves a perspective transform followed by applying 
edge detection techniques such as Canny Edge 
Detection and Hough Transform to detect the lane 
pixels. Next, a polynomial fitting technique is 
performed on the lane pixels to create a single 
representation for each lane. 
 
An alternative approach that has now become standard 
in industry is to apply deep learning techniques to the 
problem. As described in “Reliable multilane detection 
and classification by utilizing CNN as a regression 
network” [2] this method has been found to be more 
reliable and robust across a range of conditions and 
does not require as much fine-tuning to the individual 
set-up. The trade-off of this method is it requires much 
higher computational power to achieve usable results. 
 
The next step in the smart cruise control pipeline is to 
create a steering algorithm using the detected lanes as 
input. In “Robust PID Steering Control in Parameter 
Space for Highly Automated Driving” [3] a 
methodology for designing and tuning the controller 
used for the vehicle steering is laid out to maximize 
stability. A similar methodology can also be adapted 
for the vehicle’s acceleration using the detected 
distance towards the next vehicle as input.  
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The final feature required for smart cruise control is 
the detection of other vehicles and objects. This can be 
used to customize the action of the steering and 
acceleration controllers based on the type of detected 
object or be used to initiate other actions such as lane 
changes. In "Vehicle Detection in Deep Learning” [4] 
both the traditional computer vision and deep learning 
techniques are compared with the conclusion being a 
CNN can achieve much more accurate results.  
 
1.3 Problem Definition 
Following research into related works in Section 1.2, 
the team came to a consensus that a relevant problem 
to solve would be an autonomous vehicle in a highway 
simulation environment with regulated steering and 
speed based on external factors. We believe that many 
automotive companies in industry are just now 
breaking into this domain, so the research being done 
into this area will provide another great opportunity for 
improvements in the field of autonomous vehicles. 
 

2. METHODOLOGY 
 
2.1 Preprocessing 
The team used a simulated TurtleBot in Gazebo to run 
our models and algorithms. Using ROS2 as our 
programming framework, we were able to extract 
integral information from the various sensors on the 
TurtleBot such as velocities and position. It was then 
possible to publish to these same topics to meet the 
needs of the project. The input data came from the 
robot’s LIDAR scanner, the camera feed, and the 
velocity sensors. The LIDAR scanner provided 
distance measures for potential obstacles at every 
degree around the robot, but the search was narrowed 
to a smaller field of view in front of the robot to scan 
for certain obstacles. The camera data was 
manipulated through various image processing 
techniques to extract lane information, along with 
being saved to use for robot detection. Lastly, the 
velocity data was required to ensure the robot moved 
at the correct speeds and was able to properly adjust 
for either turns or obstacles in its path. 
 
2.2 Solution Implementation 
Once all the data was easily accessible through the 
multitude of ROS topics, the team worked towards the 
initial goal of accurate lane detection and subsequent 
robot reaction. Initially, two approaches were taken to 
tackle staying within the lanes while traversing the 
track. The first was to analyze the angles of the lanes 

made in the camera feed and try to optimize the 
difference between the two to be zero, however this 
was dropped in favor of the more reliable method of 
centering the robot between the two base pixels of the 
detected lane. The reaction of the robot was to 
optimize its angular velocity to remain centered in the 
lane using a Proportional-Integral-Derivative (PID) 
controller [5]. Next, the team used the LIDAR data 
coupled with an image classification model to 
implement a smart cruise control feature. Using the 
LIDAR distance data and a PID controller, a TurtleBot 
is able to maintain a predetermined linear distance 
from any object in its path. To ensure the robot is only 
maintaining a distance from another TurtleBot and not 
something such as a pedestrian or a tree, this feature is 
backed with an image classifier to determine if there is 
indeed another robot in front of it. 
 

 
 
Figure 1: TurtleBots Driving Around Track in Gazebo. 

3. RESULTS AND DISCUSSION 
 
Using these detected lanes as input the PID steering 
controller worked sufficiently after several iterations 
of tuning. The TurtleBot could successfully navigate 
indefinitely around the track while stably remaining 
within the lanes. If the velocity was increased too high 
the TurtleBot experienced substantial overshoot on 
tight corners but was able to correct within a few 
seconds. 
 
The LiDAR scan was also successful at detecting other 
TurtleBots and obstacles. Using this detected distance 
as input the acceleration controller successfully 
matched speeds to a leading TurtleBot with an 
alternating low and high velocity. The track consisted 
of a maximum of a forty-degree turn, and the system 
accurately handles the distance tracking for these 
turns. 
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For the CNN classifier, a data set consisting of 650 
images for each of the two classes was collected within 
the Gazebo simulation. The data was split into a 
training set of 500 images and a test set of 150 images. 
On this data, the model achieved an accuracy of 99%. 
To validate these results the classifier was tested live 
in the Gazebo simulator. The system accurately 
detected the TurtleBot at a variety of locations and 
distances from the camera and successfully worked 
when integrated with the acceleration controller. 
 

 
Figure 2: Model Loss versus Epochs trained. 

 

 
Figure 3: Examples of the TurtleBot Class. 

 
Figure 4: Example of the Empty Class. 

 
4. CONCLUSIONS AND FUTURE WORK  

 
In conclusion, the team has utilized the simulation of a 
TurtleBot in Gazebo to construct the models and 
algorithms needed to simulate autonomous highway 
driving, with a smart cruise control system. Using a 
TurtleBot allowed for easy real-time data collection of 
essential information which allowed the team to have 
great success with the project overall. 
 

Future work of this project will consist of additional 
testing and optimization of the current system, along 
with the implementation of features from the other 

Highway Simulation team which consist of lane 
detection on a two-lane highway, and lane changing 
functionality. With all the features compiled into one 
system, the team would then develop a passing 
algorithm to allow for one robot to change lanes and 
pass by a slow-moving robot in front of it. In addition 
to the new features, it is paramount to test the code on 
a physical TurtleBot to determine how certain sensors 
and actuators behave in a real environment. 
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Abstract: The popularity of virtual assistants has been rising at an exponential rate, but they all use the same
unnatural method of keyword activation. The goal of this project was to develop a novel system to provide a
more natural interface for interacting with virtual assistant devices. To achieve this, we developed an attention
detection system using a multitask cascaded convolutional neural network for face detection and a
convolutional neural network for attention classification. The face detector performs with a true positive rate of
95.04%, and the attention classifier performs with 97.2% testing accuracy. The attention detection pipeline was
implemented in a web application simulating a virtual assistant. We plan on improving the generalizability of
the attention classifier by training it on a larger and more diverse dataset, and we plan on implementing the
model in a dedicated device.

1. INTRODUCTION

1.1 Motivation

The use of virtual assistants (VA) has seen a meteoric
rise in past years. In the last two years alone, the
number of VAs in use worldwide has risen from 3.25
billion to 4.2 billion. By 2024 that number is projected
to overtake the world population with approximately
8.4 billion devices [1]. The text-to-speech recognition
segment of the VA market alone was valued at USD
2.2 billion in 2019, and the market is expected to grow
at a rate of 34.4% over 2020 to 2027 [2]. Despite the
technology’s incredible popularity, the way users
interact with the devices has not seen any
development. In social interactions, humans naturally
focus their attention on the speaker; however, none of
the major devices implement vision based interaction
and instead opt for unnatural keyword activation

1.2 Related Works

Developers in the VA field have begun incorporating
computer vision in their products for applications
unrelated to activation. Google has implemented
gesture controls and uses facial recognition for

personalized display in their Nest Hub Max, and
Amazon utilizes face detection to orient the Echo
Show towards the user. Previous applications of
attention detection have largely focused on driver
monitoring. Although they are not designed for VAs,
they operate on the same principles. The most notable
implementation is Comma AI’s driver monitoring
system, which utilizes eye tracking and image
classification to determine whether or not the driver is
paying attention to the road. Researchers at the
Massachusetts Institute of Technology (MIT) built a
gaze estimation model for driver monitoring which
avoids the use of eye tracking [3]. Instead, they opted
to perform face detection with a Histogram of Oriented
Gradients and linear support vector machine to detect
faces, extract the facial landmarks with a cascade of
regressors from a facial landmark mark-up, and
classify the gaze direction in one of six regions with a
random forest classifier.

1.3 Problem Definition

In recent years, the market and use of VAs has grown
rapidly, but the way in which we interact with these
assistants has been largely overlooked. We set out to
design a novel method of interaction, using computer
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vision, to provide a user experience that more closely
resembles that of a normal conversation. As mentioned
in Section 1.2, using computer vision for tasks related
to attention detection has been explored before.
CommAI’s driver monitoring system heavily relies on
eye tracking, however, eye detection is unreliable in
this application due to the many angles and lighting
conditions a user may interact with the device at. MIT
proposes a more suitable implementation, however
their system uses a six stage pipeline and is a six class
classifier. For the purposes of VA activation, binary
classification will suffice and is both simpler and less
computationally expensive.

2. METHODOLOGY

2.1 Dataset Generation

Training and evaluation is carried out on a dataset of
10 subjects. For each subject, there are 200 real images
and 324 synthetic images, providing 5240 total images
[4]. The images are varied in illumination,
background, and pose (by up to 30 degrees in either
direction). This dataset was supplemented with an
additional 200 images of a sitting subject with similar
variety. Preprocessing of the images involved
converting to grayscale and resizing to 224 pixels
along the smallest edge (maintaining the aspect ratio).
Each image was labelled as either “attentive” or
“inattentive” based on whether or not the subject was
looking towards the camera. A 20% test split was used
to evaluate the models.

2.2 Solution

The solution consists of a two step pipeline: face
detection and attention classification. If the system
passes the first step (face detection) the attention
classifier is activated and makes the binary decision as
to whether or not the user is focusing their attention on
the device.

2.3 Face Detection

A multitask cascaded convolutional neural network [5,
6] (MTCNN) was used to identify if a face is present
in an image frame. The network consists of three
stages in the form of independent convolutional neural
networks (CNN).

The first stage, the proposal network, uses a fully
convolutional network1 (FCN). This network finds
windows in the image that could potentially contain a
face as bounding box regression vectors. The network
performs some refinement to combine overlapping
regions, and outputs the remaining candidate windows.
Next, the refine network performs calibration with
bounding box regression and uses non-maximum
suppression to further combine overlapping windows.
It then outputs whether each candidate contains a face
or not, along with a bounding box and vector for facial
landmark localization (eyes, nose, and mouth).Finally,
the output network operates in a similar fashion to the
refine network, but describes the face in more detail.
This final stage outputs the binary face classification,
along with the bounding box and five absolute
landmark locations: the two eyes, nose, and mouth
corners.

2.4 Attention Classification

Figure 1: A residual block in the ResNet architecture. Layers can
skip subsequent layers in the network through an identity shortcut
connection.

A CNN was used to make a binary classification on
the attentive state of a face. The classifier uses the
ResNet [7] architecture with 50 convolutional layers.
The network achieves far better results with less
training than its shallower counterparts, and manages
to avoid the problem of vanishing gradients2 by
introducing identity shortcut connections. These
connections allow a layer to skip the subsequent layers
and map its output directly to a layer further in the
network as shown in figure 1. The first layer is a 7×7
kernel, the second layer is a 3×3 max pool, and each
subsequent layer is a 3×3 kernel, all using rectified
linear unit activation. Dropout was applied for
regularization and to prevent co-adaptation of neurons.

2 Repeated multiplication during backpropagation causes the
gradient to shrink. If a network is sufficiently deep, this will cause
massive degradation in performance.

1 A CNN without a dense layer.
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Training was performed with the Adam optimizer [8]
using negative log likelihood loss for 10 epochs.

2.5 Virtual Assistant Integration

The model was implemented in a Streamlit
web-application made to simulate a VA device. The
model analyzes every other frame to make its
classification on the user’s attentive state. When the
user is attentive for 10 consecutive frames (five
consecutive positive classifications from the model),
the app waits for the user to begin speaking and listens
until they complete their sentence. The recording is
then sent to a custom Dialogflow agent through the
dialogflow API and both the audio and text responses
are displayed to the user.

3. RESULTS AND DISCUSSION

The face detector performs at a true positive rate of
95.04% and the attention classifier achieved an
accuracy of 97.2% on the test set.

Figure 2: Learning curve of the attention classifier.

The accuracy of the models closely reflects its
practical performance in conditions similar to the
training data. Interacting with the assistant was a
nearly seamless user experience3, and false positives
were handled by the assistant activation logic in the
application. False negatives from the classifier
occasionally delay the activation of the assistant, but
these occurrences are infrequent enough not to
diminish the overall user experience.

Despite the attention classifier’s accuracy in controlled
conditions, when presented with poor lighting or
unfamiliar angles the performance suffered. This is
likely largely due to the consistent set of lighting and
angles in the training images. Additionally, all the
images were taken at similar distances from the
camera. As such, in significantly unfamiliar conditions

3 Demo interaction is shown at
https://www.youtube.com/watch?v=0-YFEVMPsV8

the model will get stuck on one of the two
classifications.

4. CONCLUSIONS AND FUTURE WORK

The two components of the attention detection pipeline
were successfully built. Both models performed well
in a testing environment and in controlled live
environments. In unfamiliar contexts the attention
classifier did not perform as well. Reflection on the
training data suggests this was due to insufficient
variety in the image attributes. The models were
integrated with a proof of concept VA application and
provided a positive user experience.

We aim to improve the generalizability of the attention
classifier by training on a more varied dataset. Images
of subjects taken from different angles, elevations, and
distances will help the model handle the many edge
cases that arise from live classification. Performance in
poor light conditions may also be improved by adding
more images in low light and with different light
sources. Finally, we plan on implementing the model
and activation logic in a dedicated VA device.
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Abstract: As one of the teams in Western AI’s Intermediate Project cohort, we explored and learned about the 
use of supervised learning within music genre classification. Our team had an opportunity to extract song 
features, build and train multiple models, then compare and build a single, most accurate model as a team. 
Initially, we created a KNN model with an accuracy of roughly 45%. Then, we tried a simple neural network 
model and achieved 62% accuracy. Using the neural network approach, we created a final, multi-layer model 
that reached 66% accuracy. Our team believes the AI community can benefit from making models more 
accessible to external users. We often hear about new, advanced models being published, but the average 
person rarely gets to try them. For that reason, we decided to publish our model to a website that we created 
leveraging Flask and Tensorflow.js. Anyone can access the website, easily upload a song and get a prediction 
back from the model.  
 

1. INTRODUCTION 
 

1.1 Motivation  
 

With the increased popularity of music streaming 
services such as Spotify and Apple Music, the problem 
of music genre classification is becoming more 
relevant. The website “Every Noise at Once” reports 
5,283 different genre distinctions on Spotify as of 
2021-03-22 [1], which demonstrates the subjective 
nature of this classification and highlights a possibility 
of using Machine Learning to achieve a more accurate 
categorization.  
 
This paper aims to compare the performance of K-
Nearest Neighbors (KNN) algorithms to that of 
Artificial Neural Networks (ANN) in classifying songs 
into ten genres by analyzing Mel-Frequency Cepstral 
Coefficients (MFCC) extracted from songs. As part of 
this project, we were also motivated to make our 
classifier model easily accessible online. For that 
reason, we published a website [2] where anyone can 
upload a song and get back a classification for it. 
 

1.2 Related Works  
 
An essential part of our work was extracting MFCCs 
from the music files. The paper “Music genre 
classification using MIDI and audio features.” [3] 
explores a similar approach to our problem and 
provides evidence that the accuracy of genre 
classification using MFCC is one of the best when 
compared to other feature extraction techniques such 
as BEAT, STFT, and MPITCH. 
 
Similarly, the paper “Automatic Music Genre 
Classification for Indian Music”[4] provided insight on 
the applicability of KNN models using MFCC data but 
concluded that KNN is not the best model for the task 
at hand and that MFCC data alone is not enough to 
achieve the highest possible accuracy. 
 
1.3 Problem Definition 
 
The scope of this project is to explore how accurately 
simple KNN and neural network models can classify 
songs into genres. To perform this classification, we 
also had to explore ways to extract audio features from 
the songs using MFCCs; an audio file contains 
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millions of bits, so it cannot be easily used as input and 
has to be reduced to only a few coefficients. 
 

2. METHODOLOGY 
 
Instead of using a pre-existing dataset, our team 
elected to extract our data from songs to encompass 
the entire data science process further. Feature 
extraction is a necessary and crucial part of analyzing 
and finding relations between different songs. Raw 
audio data cannot be understood by models and instead 
must be converted into understandable format features, 
usually in the form of coefficients or single values. 
 
First, raw audio data needed to be converted into a 
spectrogram. “A spectrogram is a visual representation 
of the spectrum of frequencies of sound or other 
signals as they vary with time.” [5] It’s a 
representation of frequencies changing with respect to 
time for given music signals [6]. 
 

 

Figure 1: An example of a spectrogram 

Upon converting the audio files, we were able to 
extract several features using a Python package, 
Librosa. Features included zero-crossing rate, spectral 
centroid, spectral roll-off, and most importantly (the 
features which had the most significant effect on the 
accuracy of our model), the Mel-Frequency Cepstral 
Coefficients. MFCCs of a signal are a small set of 
features (usually about 10–20) that concisely describe 
the overall shape of a spectral envelope [6]. Once we 
extracted the features of all 1000 songs used in our 
training data, we were able to classify songs into 
different genres.  
To classify the datasets, the group elected to begin 
with a KNN algorithm. KNN was selected as a starting 
point because the implementation is relatively simple, 
and it requires very little computational complexity. 
The results of the KNN model were then used as a 
baseline for evaluation of more complex models better 
suited to the task of classifying music genres. As the 
KNN model is sensitive to noisy data and outliers, the 

optimal model would be robust enough to handle 
outliers and predict more complex non-linear 
relationships. For these reasons, the group elected to 
proceed with an Artificial Neural Network (ANN) 
model. To evaluate the proposed solution, it would 
have to achieve a higher accuracy than the KNN model 
on the test set. 
  
Additional analysis was performed on the ANN model 
to determine the optimal number of hidden layers, in 
addition to hyper parameter tuning. To determine the 
ideal number of hidden layers, the hyper parameters 
were held constant while adding layers until the 
system's performance increase did not outweigh the 
computational cost. Once the number of hidden layers 
was selected, the hyper parameters such as learning 
rate were tuned until the model achieved the highest 
possible accuracy. 
 

3. RESULTS AND DISCUSSION 
 

To determine if the ANN model was appropriate for 
the task of classifying music genres, it was compared 
against the baseline KNN model. Table 1 demonstrates 
the results of each model.  
 

Model Test 
Accuracy 

Train Accuracy 

KNN 42.88% 61.05 % 

ANN_
1 

63.80 % 96.38 % 

ANN_
2 

64.90 % 98.62 % 

ANN_
3 

65.80 % 99.37 % 

 
Table 1: Accuracy Results of  models 

ANN_1 describes the most basic ANN model with two 
hidden layers, while ANN_2 describes a 3 hidden layer 
model with no hyperparameter tuning, and finally 
ANN_3 represents the third and most robust model 
containing 3 hidden layers in addition to 
hyperparameter tuning. It is evident from the results 
that the ANN is indeed an appropriate model to 
classify the data as its performance is superior to that 
of the KNN. Additionally, it is apparent that the 
accuracy increases as the model complexity increases, 
which is an important insight. Figure 2 shows the 
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training and validation accuracy as a function of 
number of epochs 
 

 
Figure 2: Training and validation accuracy plot 

The result of Figure 2 again demonstrates the 
correlation between increase in hyper parameters, and 
improved accuracy in the model. The results are as 
expected and validate the assumption that increased 
model complexity will lead to increased performance. 
 
From the project, the group has learned that model 
selection contributed the most to the results. Although 
slight increments in performance were achievable 
using hyperparameter tuning, having the right model 
for the task is the best approach to improve the 
performance. 
 

4. CONCLUSIONS AND FUTURE WORK 
 

All in all, our project produced a model that correctly 
classifies songs into genres with 65.80% accuracy. 
During the development period, our team created 
models that use extracted MFCCs to categorize the 
songs. The first model, using a KNN algorithm, only 
achieved an accuracy of approximately 42.88%. 
However, transitioning into a simple neural network 
brought the prediction accuracy up to 65.80%. 
 
In the future, our team aims to attain higher accuracy 
by experimenting with different models and different 
feature extraction methods. In an article published in 
2018 [7], the authors combined MFCC feature 
extraction along with Principal Component Analysis 
(PCA) to improve their speech recognition system. 

The addition of PCA reduced the number of MFCCs 
used by the model, which consequently increased the 
accuracy of their system from 86.43% to 89.29% [7]. 
We believe a similar approach, using PCA, can be 
used to improve the accuracy of our music genre 
classifier. 
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Abstract: Generating point cloud models has become an increasingly popular practice within the machine 
learning community. Human shape data is the key to producing advancements within medical imaging, virtual 
reality, gaming, and animation fields. Learning object structure in 3-dimensional space presents many 
challenges in which deep learning networks have become iteratively capable of resolving. In this paper, we 
utilize a proven generative modeling technique to learn the approximate representation of human body shapes 
on point cloud data from the Semantic Body Models Dataset. By leveraging TreeGAN, a tree-based graph 
convolution generator network, our model is capable of learning the different segments of the human body in an 
unsupervised fashion. This approach combines the classic Generative Adversarial Framework with a nuanced 
generator that boosts its feature representation by sequentially accessing historical prediction states. Due to the 
consistent internal nature of human body shape data, we only sample points from the surface of the body, 
similarly restricting the model’s learned representations. 
 
 

1. INTRODUCTION 
 

1.1 Motivation  
 

Recently, neural networks involving 3D data have 
attracted significant research interest. Since the 
introduction of Point Net in 2016, 3D point clouds 
have emerged as the most computationally efficient 
method of interpreting 3D data [1]. While most work 
has focused on object segmentation, classification, and 
object detection, in 2019 a novel architecture 
(TreeGAN) was proposed for 3D point cloud 
generation [2]. Leveraging the Generative Adversarial 
Network (GAN) [3] framework and tree-based graph 
convolution networks (GCNs), TreeGAN achieved 
seminal results on the ShapeNet40 dataset [2]. 
However, little to no work has been done to expand 
this object generation to more impactful datasets. 
  
The immediate application of human body generation 
is to computer vision and medical imaging fields. The 
interpretation and generation of the human figure is an 
essential computer vision task that has received little 

attention. Furthermore, medical privacy restrictions 
make novel human body generation beneficial to 
training medical students and artificial intelligence 
systems on this data. 
 
1.2 Related Works  
 
1.21 Point Clouds, Neural Networks, and GANs   
 

Most researchers transform point cloud data into 3D 
voxel grids or collections of images before running the 
data through deep learning pipelines. Charles et al. [1] 
proposed PointNet, a novel neural network that 
directly consumes point cloud data, which well 
respects the permutation invariance of point clouds. 
PointNet can be trained to perform 3D shape 
classification, shape part segmentation and scene 
semantic parsing tasks. Since the invention of 
PointNet, point cloud data have been used not just in 
classification networks but also in generative tasks. 
For example, Achlioptas et al. [4] proposed a GAN for 
the generation of 3D points clouds called r-GAN. The 
generator for r-GAN is based on fully connected 
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layers, leading to r-GAN having difficulty in 
generating realistic shapes with diversity. 
 

1.22 Improved Training of Wasserstein GANs 
 

A common issue in training GANs is the stability of 
training. Arjovsky et al. [5] introduced Wasserstein 
GAN, which uses an efficient approximation of the 
earth mover's distance function to optimize the 
discriminator and generator in GAN training. WGAN 
improved training stability and provided a meaningful 
loss metric that correlated with the generator's sample 
quality. However, WGAN still suffered from poor 
sample generation or a failure to converge, and it has 
been found that this is due to the weight clipping used 
to enforce a 1-Lipschitz continuous constraint on the 
critic. Gulrajani et al. [6] introduced gradient penalty, 
an alternative to weight clipping. It penalized the norm 
of the critic gradient with respect to the critics input, 
improving the sample quality and ability to converge 
for WGANs. 
 

1.23 Graph Convolutional Networks  
 

Over the past few years, many works have focused on 
using deep neural networks for graph problems. 
Defferrard et al. [7] proposed fast-learning 
convolutional filters for graph-based applications, 
significantly accelerating one of the main 
computational bottlenecks in graph convolution 
problems with large datasets. Kipf and Welling [8] 
introduced scalable GCNs, where convolution filters 
use only the information from neighboring vertices 
instead of from the entire graph. All the GCNs 
mentioned prior are designed for classification 
problems, meaning that the connectivity of nodes in 
the graph were known beforehand. This issue will 
present challenges for the generation of 3D point 
clouds, where the connectivity is not known. 
 

1.24 GCNs and GANs for 3D Point Clouds Generation  
 

A number of works have tackled the issue of 
connectivity. Valsesia et al. [9] dynamically generated 
adjacency matrices using the feature vectors from each 
vertex at each layer of graph convolutions during 
training. Unfortunately, computing this matrix at a 
single layer incurs a quadratic computational 
complexity on the number of vertices. This approach is 
not effective for multi-layer and multi-batch networks. 
Dong et al. [2] proposed TreeGAN, which, like the 
other work, requires no prior knowledge regarding 
connectivity. TreeGAN, however, is much more 
computationally efficient as it avoids constructing 
adjacency matrices. It uses a tree-based graph 

structure, and it exploits this structure by using 
ancestor information to propagate features over the 
graph. The tree-based graph structure also has the 
benefit of allowing the network to generate point 
clouds for different semantic parts of a model without 
prior knowledge. 
 
1.3 Problem Definition 

 
In this paper, we introduce point cloud generation of 
human body shape representations from randomized 
latent vectors. We explore the semantic parametric 
reshaping of human body models dataset [10] (a 
derivative of the Caesar dataset) to train our model. 
Historically, point cloud generation has been explored 
solely on the ShapeNet40 dataset. This dataset 
contains 40 different object classes and enables the 
generator models to produce a wide range of outputs. 
Currently, the TreeGAN paper has achieved state-of-
the-art results on this dataset. We aim to train a 
generator on a single object class with a higher point-
cloud resolution (3072 points) to produce increasingly 
granular results. 
 
 

2. METHODOLOGY 
 

2.1 Dataset  
 
The dataset used to train and evaluate our model is 
composed of 3048 scanned body models. More 
precisely, there are 1531 male models and 1517 female 
models. To generate this dataset, we collected the 
mesh models from the publicly accessible dataset: 
Semantic Body Models Dataset [10]. The decision to 
develop our dataset from the Semantic Body Models 
Dataset is driven by the fact that it is open-sourced and 
completely available to the public and research 
communities. Further, the meshes in this dataset are 
pose-invariant, thus, allowing for more efficient 
learning of the true biological features of the human 
form rather than differences in pose.  
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Mesh objects are highly memory-intensive due to the 
nature of their vertex-facet construction. Thus, point 
clouds from scanned meshes were built using an even 
surface sampling method to construct the point clouds 
from 3072 evenly spaced points on the surface of the 
mesh. This method of surface sampling was done for 
two reasons. The data points within the volume of the 
mesh do not significantly contribute to the learned 
features of the human form under the assumption that 
models are not hollow; Surface sampling maximizes 
the resolution of features using a point cloud 
representation while also minimizing memory and 
compute costs.  

 
Figure 2 Data example from the Semantic Parametric Reshaping of 

Human Body Models dataset and a point cloud sample used in model 
training. 

2.2 Model Architecture 
 
Our model is built on the GAN framework, in which a 
generator and discriminator model train sequentially 
according to respective loss functions introduced in 
Wasserstein GAN [5].  
 
𝐿  =  −𝐸𝑧∼ 𝐷 𝐺(𝑧) ,                    (1) 
 
 
𝐿  =  𝐸𝑧∼ [𝐷(𝐺(𝑧))] −  𝐸𝑧∼ [[𝐷(𝑥)] 

+𝜆 𝑝𝐸𝑥 |𝛻𝑥𝐷(ˆ𝑥)|  −  1  .                (2) 

G and D denote the generator and discriminator 
networks, z is a latent vector created using a normal 
distribution, 𝑥 are line segments between real and fake 
point clouds, x ′ ∼ G(z) and x represent real and fake 
point clouds respectively, and R is the real data 
distribution. We also apply a gradient penalty, 𝜆 𝑝, to 
satisfy the 1-Lipshitz condition for GANs.  
 
The generator leverages tree convolutions defined by  
 
 

𝑝 +1 = 𝜎 𝐹 𝑝 + 𝑈 𝑞 + 𝑏
𝑞 ∈ 𝑝

, (3) 

 
which is thoroughly described in (tree-GAN).  
 
The generator takes as input a 96-dimensional latent 
vector, and through the convolution defined above, 
conventional convolutional neural network loop terms, 
and upsampling through defined branching, outputs a 
set of 3072 3D points. Figure 1 shows the generator 
built with tree-GCN layers.  
 
As standard in GAN training, the Adam optimizer was 
used with the custom loss functions shown in (1) and 
(2).  
 

3. RESULTS AND DISCUSSION 
 
GAN evaluation metrics are an ongoing discussion 
within the research community as quantitative 
evaluation methods are continuously being introduced 
to measure crucial elements of a Generator’s 
performance. Given the nature of this project, the 
appropriate evaluation metrics are Jensen-Shannon-
Divergence (JSD), Coverage (COV-ED, COV-MMD), 
and Minimum Matching Distance (MMD) [11]. These 
metrics require a MMD comparison between the 

Figure 1 TreeGan Generator Architecture [2] 
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reference data and the generator’s closest 
representation per reference example. Our model is 
currently on ~epoch 500 within the training process 
and produces outputs as seen in figures 3, 4. Per 
qualitative examination, the generated results are not 
yet at comparable to the training data and minimum 
matching distance would provide inaccurate pairings 
between the generated and reference examples, 
resulting in a misleading evaluation of the model’s 
efficacy.  

 
Figure 3 Generated Human Body Shape rotated 45 degrees along Z-axis. 

 
Figure 4 Alternate Generated Human Shape (Side View) 

Upon observation, the model has clearly learned the 
basic features of a human body. Specifically, it has 
begun representing the chest, arms, legs, and head. As 
the training progresses, the amount of noise in the 
generated examples is expected to significantly 
decrease. The TreeGAN architecture was designed for 

non-hollow 3D point-cloud data. Due to the hollow 
composition of human shapes within our dataset, the 
generator has had difficulty minimizing its loss on the 
cylindrical-like components of the bodies. 
  
 

4. CONCLUSIONS AND FUTURE WORK 
 

In this project, we trained a TreeGAN model to 
introduce the generation of human body shapes to the 
machine learning community. We discovered a 
drawback when applying this architecture to hollow 
shapes. Future work on this problem should involve 
alterations within the TreeGAN architecture to 
effectively handle hollow data. Interpolation would 
also be an interesting area of exploration for a final 
model to permit controllable generation. 
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Abstract: This paper presents a potential solution for the lack of publicly available and reliable information on
the accessibility of specific public buildings. We present a method to collect 3D models of an indoor space using
a Turtlebot 3 and a IntelRealsense depth camera, and a method for accessibility feature extraction in the form
of a convolution neural network trained on a dataset of indoor features related to accessibility.

1. INTRODUCTION

1.1 Motivation

People living with physical disabilities, particularly those
with motorized wheelchairs can have trouble accessing
public spaces [1]. Currently the sources of information
on the accessibility of specific public spaces are scattered
and unreliable, and whether a public space is
maneuverable for an individual is determined largely
based on previous experience. Currently there is no
publicly available database of 3D models of building
interiors for the purpose of accessibility. Open source
tools to map public spaces and present them with specific
features highlighted exist and are widely available, but
have not yet been applied to this specific purpose.

We hope to address the need for data related to the
accessibility of public spaces by using modern mapping
and feature analysis techniques.

1.2 Related Works

Several techniques have been developed for mapping
interior spaces. Exploration of an Indoor- Environment
by an Autonomous Mobile Robot was completed at the
University of Kaiserslautern by Thomas Edlinger and
Edwald Von Puttkamer [2]. This project chose to use a
“Bubble Method”. This method worked, through a virtual
bubble forming with borders, which were determined by
the scanner, forming around the robot. The robot was

then programmed to explore the bubble causing the
virtual bubble to deform until there were no more virtual
borders. The Robot continuously searching for virtual
borders ensured that new data of new locations was
collected.  While the robot was exploring data was also
collected about the location of the real boarders. The
results that were obtained from the project at the
University of Kaiserslautern were that this method works
in most indoor environments, as well as can be executed
in real time, therefore is suitable to be installed on
autonomous mobile robots.

There are many popular and publicly available solutions
for classifying images. One of these systems, Residential
Energy Service Network (ResNet) is a common deep
learning method that can be used for image
classification[4]. The development ResNet addressed the
issue of the vanishing gradient problem, which is an
issue that unrolls the network each input time step
resulting in a very deep network that requires weight
updates [3]. This issue was solved through the creation of
residual blocks which allows connections to be skipped
and the residual to be passed on to following layers.
Overall allowing the neural networks to be more
dynamic [4].

1.3 Problem Definition

There is currently no way for the approximately 300,000
Canadians aged fifteen and older who use a wheelchair to
easily determine whether they will be able to access

27



small establishments such as restaurants and shops [5].
Their only options are to travel to the building to
investigate or to depend on the potentially unreliable
testimonies of business owners, online reviewers, and
friends and family. We aim to develop a technology that
will allow wheelchair users and other individuals with
physical disabilities to have access to all of the
information required to determine if a space is accessible.
This includes specifications such as the width of
doorways, the height of steps, and the location of
handrails.

The objective of this project is to program a robot to
autonomously explore and map an indoor space and
identify features that promote or hinder accessibility. In
order to successfully navigate the space, the robot must
use a simultaneous location and mapping (SLAM)
algorithm. The camera data would be sent from the
Waffle Pi to a computer to create a 3D map and identify
important aspects of the space. The solution must
integrate SLAM, 3D mapping, and object detection to
effectively aid people living with physical disabilities in
their daily activities.

2. METHODOLOGY

2.1 Hardware Integration

Proper implementation of our idea meant that we needed
to be able to control the robot remotely, and also to
remotely receive image data from the camera attached to
the robot.

The first step was configuring the Robot Operating
System (ROS) on the robot. ROS was essential for us to
interface with the robot’s hardware, including the
cameras, the wheels, etc. ROS uses a “topic” system that
allows us to obtain information about the hardware and
sensors (e.g. battery life, velocity, location, etc.). By
“subscribing” to these topics, we can obtain the
information. Through SSH, we remotely accessed the
robot, and then downloaded and installed pre-built
TurtleBot3 software directly onto it. The same software
packages were also installed on another computer that
was used to remotely control the robot. The pre-built
TurtleBot3 packages already included a script that
allowed us to control the robot with a keyboard and
mouse.

Another crucial step was configuring the Intel RealSense
camera, and setting up the robot to send its data to the
laptop remotely. Since ROS was already being used to
interface with other hardware on the robot, we naturally
had to install the appropriate ROS wrapper for the Intel

RealSense camera. The wrapper allows us to send the
camera’s data directly to the laptop using ROS’s topic
system. By subscribing to the appropriate camera topics
using rviz (a visualization tool built into ROS), we were
able to see the 3D models and images that the camera
was generating in real-time.

Figure 1: Example of a 3D model generated by the Intel RealSense
camera in rviz.

2.2 SLAM

SLAM involves the robot being able to autonomously
move and map the area without having a human control
it.

By utilizing Intel’s RealSense wrapper to obtain
information from the camera, the data can be used with
other open-source ROS localization packages to get the
robot to move autonomously and map its surrounding
area.

2.3 Dataset and Model Creation

It proved challenging to find an openly available dataset
containing images of indoor building features that are
important for accessibility. Consequently, a dataset was
created using Google Images. We attempted to download
images using the Javascript Console of Google Chrome,
but the browser began blocking our attempts after a few
successful trials. The images were instead obtained using
a less efficient Google Chrome extension. The dataset
contained 1500 images of stairs, handrails, and doors.

A machine vision model was built by retraining the
Inception ResNet v2 model available through Keras, an
open-source Python library. We chose to use this model
because it uses a convolutional neural network (CNN),
which provides very high accuracy for image
classification, which has been demonstrated against the
ImageNet dataset. The last Dense layer was changed to
have an output dimensionality of 3, which corresponds to
the number of classes that our model currently detects.
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For validation, we randomly selected 20% of the images
from our dataset.

Figure 2 above shows the last few layers of the model’s
structure:

Figure 2: Last chunk of layers of the model structure

Note that the main difference between Inception ResNet
v2 and our version of the model is the last layer.

3. RESULTS AND DISCUSSION

Using the modified version of Inception ResNet v2, we
were able to achieve an accuracy of 75% and a loss of
5.8 against the validation images selected from our
dataset.

After testing using images taken with a phone, and other
images taken from Google Images, we found that the
model struggled to classify the images reliably. It also
struggled to classify images within the dataset we
created. This was indicative of an underfitted model.

Due to the limited size of the dataset, and the naive
approach to training, these results were about as
expected. Our approach with changing the single layer
had the advantage of being quick to implement, and it
demonstrated potential. However, the accuracy of this
current implementation is too low for practicality.
Further model modification and fine-tuning, or even
considering using or creating a different model
architecture that caters towards our use case has the
advantage of being more reliable, which is the ultimate
goal.

Unfortunately, due to version mismatching with the
open-source ROS libraries between the laptop and the
robot, we were also not able to get SLAM functionality
fully working. We were only able to move the robot
manually using a keyboard and mouse, and had to map
the robot’s surrounding area under our control.

4. CONCLUSIONS AND FUTURE WORK

The goal of this project was to program a robot to
autonomously map and explore a space and identify key
features for accessibility. The retrained CNN recognized
doors, stairs, and handrails in the validation set with an
accuracy of 75%. The precision of the model could be
improved by at least 20% through using a larger dataset
and further refining the model. Further work on the
hardware platform, and to the SLAM software is
required. Additionally, further work is required in
implementing a direct pipeline from the realsense camera
to the CNN.
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Abstract: Heart disease is a leading cause of death around the world, necessitating the development of software that can 
predict the likelihood of a person having heart disease in the future by analyzing medical data. This prevention method 
will ideally limit the number of heart disease patients. This application’s purpose is to tackle this problem using three 
neural network models to predict a patient’s likelihood of getting heart disease from patient attributes in the Cleveland 
database. Three neural network models were implemented: SVM, KNN, and RBF. The results of all three models were 
optimized to achieve accuracies between 64-95%. A long-term goal is to improve the models’ accuracy to 90-95%. 
  

1 INTRODUCTION 
 

1.1 Motivation  
Heart disease is one of the leading causes of morbidity 
and mortality around the world, with numbers 
increasing every year; the mortality rate is around 31% 
annually. These statistics show that there is an 
increasing need for software to warn an individual the 
probability that he or she will develop heart disease in 
the future, so immediate action can be taken to live a 
healthier lifestyle. Complex algorithms and neural 
networks can be utilized through machine learning and 
artificial intelligence to enable self-learning from data 
without requiring human intervention. 
 
1.2 Related Works  
In a similar investigation into the use of neural 
networks for heart disease prediction, 6 ML classifiers 
were used to validate the Cleveland dataset. It was 
found that Chi-square and principal component 
analysis with RF had the highest accuracy overall. It 
was discussed that a major problem that frequents 
machine learning is the high dimensionality of the 
dataset and reducing this is key to higher accuracies, 
especially through the use of feature selections 
techniques [1].  

1.3 Problem Definition 

The goal of the Heart Disease Predictor is to apply 
different neural networks to improve upon the model’s 
accuracy in the studies outlined in the Related Works 
and to create an interactive front-end for users to 
access this information.  
 
2 METHODOLOGY 

2.1 Data  
First, start with presenting the data. The dataset that 
was analyzed is the Cleveland dataset obtained from 
the UCI ML repository. The dataset contains 14 
medical parameters that were sorted through.  
 
2.2 Proposed Solutions and Evaluation 
2.2.1 SVM 
The SVM algorithm is essentially a method of creating 
a hyperplane of best fit or decision boundary to sort 
data into separate categories. In the case of the heart 
disease predictor, a hyperplane of best fit divides 
patient data into either the prediction that the patient 
does or does not have heart disease [2]. 

Kernels are used to implement an SVM and each type 
of kernel has unique parameters that need to be tuned. 
Three kernels were used and optimal values for each 
kernel’s parameters were found.  

30



To find the optimal value of each parameter, the team 
created a program to loop through the SVM algorithm 
and output the accuracy for different parameter values. 

2.2.2 KNN 
KNN is a supervised machine learning algorithm that 
depends on input data to produce an output based on 
new unlearned data. This algorithm assumes that 
similar data will exist in a closer proximity. The 
calculation of similarity comes from calculating the 
distance between two points. The distance between the 
points as well as an index is then appended to an 
ordered collection. It is then sorted by ascending order 
of distances collected where the K values of the first 
few data points are selected. These K values in 
classification will return the mode [3]. 

Choosing the correct and most appropriate K value is 
crucial to improving the accuracy. The K value is 
modified until it reaches an optimized accuracy. 
Eventually, there will be more noticeable errors in the 
results, meaning that the K value has become too large. 
Conversely, reducing the K value to 1 reduces stability 
as the algorithm is observing a singular nearest 
neighbor. For this classification problem, K is typically 
an odd number to act as a tiebreaker [3].  

2.2.3 RBF 
The RBF Neural Network is a three-layer feedforward 
neural network using clusters with a smooth gradient. 
The first layer is an input layer, the second applies the 
RBF, and the third is the output layer which is 
determined by applying a weight (found using least 
squares linear regression) to layer two. The 
classification of an unknown point is determined by 
first finding the RBF vectors of the point with respect 
to their centroids (these centroids are found by 
performing k-means). The next step is to then apply a 
weight to each of these vectors and determine the 
maximum value. Finally, the index of this maximum 
value is then returned as the class that the unknown 
point belongs to.  

The model was optimized by refining the 
hyperparameters beta, the speed of decay of the 
gradient, and k, the number of clusters, for maximum 
accuracy. The two equations considered for beta are 
shown below [4]: 

(1)            (2) 

Different values of k ranging from 0 to 250 clusters 
were tested for each beta equation. 

3 RESULTS AND DISCUSSION 
The highest accuracy of each model is shown in Table 
1 below. 

Table 1 - Summary of Model Accuracy 
Model Maximum Accuracy  
SVM 88.5% 
KNN 87%  
RBF 89%  

 
3.1 SVM 
Many trials were completed by changing a parameter 
for each kernel. The accuracy changes because it 
affects the shape of the hyperplane. Figures 1 - 3 show 
the results of using a program to test many parameter 
values for each kernel. Table 2 summarizes the highest 
accuracies for varying the parameters of each kernel. 

 
Figure 1 - SVM Polynomial Kernel 

 
Figure 2 - SVM Linear Kernel 

 
Figure 3 - SVM RBF Kernel 

Table 2 - SVM Best Parameters 
Kernel Parameter Accuracy  

Polynomial Degree = 9  0.7377  
Linear C = 75 0.8852459  
RBF Gamma = 1 0.590  

 
The linear kernel with a C value from 60-80 resulted in 
the most accurate predictions. This range is due to the 
limited data as no data points lie within this range. A 
linear kernel with a C value of 75 was used for the 
Anvil application. 

3.2 KNN 
KNN is 64-95% accurate, showing the best result with 
K=13 at 87% accuracy. The team experimented with 
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all the odd values from 1-19 to see the accuracy at a 
large range of K values. As expected, there was some 
variability of the accuracy with each K value, so an 
approximate average accuracy value was recorded and 
summarized in Table 3 below. Each K value was re-
run 10 times, and the high and low values were 
recorded for each [4].  

Table 3 - KNN RBF Kernel 

 

 
Figure 4 - KNN RBF Kernel 

There are several advantages to this algorithm: it is 
easy to implement and simple since the user only 
needs to tune parameters and does not need to build 
the model from scratch. Although in this project it was 
used for the purpose of classification, it is super 
versatile and can be used for regression and search as 
well. The main disadvantage is that it should not be the 
chosen algorithm when predictions are required to be 
made rapidly.  

 
3.3 RBF 
The model accuracies for the different parameters are 
shown in Figure 5 and 6 below. A summary of the 
maximum accuracies from each beta equation are 
shown in Table 4. Based on this evaluation, the 
optimal beta was determined to be Eq. 2 with a k of 35 
clusters which was implemented in the final model.  

 
Figure 5 – Accuracies for Eq. (1)               Figure 6 - Accuracies for Eq. (2)  

 
Table 4 - Maximum Accuracy for Each Beta 

Beta k Maximum Accuracy 
Eq. (1) 33 86.89% 
Eq. (2) 35 89.02% 

Some advantages of RBF neural networks include 
higher accuracy and better efficiency. When dealing 
with noisy input data, RBF networks outperform 
conventional neural networks in terms of robustness 
and tolerance. Disadvantages include sensitivity to 
dimensionality and the possibility of not achieving the 
best performance due to a local minimum problem.  
 

4. CONCLUSIONS AND FUTURE WORK 
 
In conclusion, with the three models: SVM, RBF, and 
KNN, the highest accuracy in each model was 
optimized at 88.5%, 89%, and 87%, respectively. 
Since all the results were similar, and KNN fluctuated 
with a degree of error, the three methods were all 
presented on the website for the discretion of the user.  

In the future, the group would like to optimize to 
accuracies in the range of 90-100% and develop an app 
that would allow medical professionals to use to 
confirm their heart disease diagnostics. One major 
challenge that the group faced was the large variability 
in the results; a way to improve this would be to obtain 
much more data, beyond the UCI heart disease dataset.  
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k  Avg. Accuracy Test 
Set (%)  

Low Range 
Value (%) 

High Range Value 
(%) 

k=1 73 64 82 
k=3 82 74 89 
k=5 82 77 85 
k=7 83 77 89 
k=9 83 75 89 
k=11 83 69 89 
k=13 87 72 95 
k=15 85 77 90 
k=17 83 74 92 
k=19 80 75 85 
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Abstract: Creativity and artistic expression have always set humans apart in terms of what makes us 
intelligent. As machines become more capable and intelligent, they can phase out tasks of increasing 
complexity. The goal of this work is to demonstrate a machine learning model’s ability to recreate creative 
tasks, using the Cycle Generative Adversarial Network (GAN) architecture to create artwork out of 
photographs. Approaching image translation with a CycleGAN allows for the use of unpaired data while 
training. Utilizing the Adam optimizer with custom hyper-parameters, and the least squares loss function, this 
work is able to generate artwork to a similar degree as a human artist. 
 

1. INTRODUCTION 
 

1.1 Motivation  
 

Generative adversarial networks can be implemented 
into a wide variety of applications including, but not 
limited to image-to-image translation and generating 
realistic fakes of human faces [1]. The utilization of a 
cycle-consistent GAN allows for the use of unpaired 
image datasets. This unique feature of cyclic GANs 
eliminates the need to develop large datasets that 
contain paired images, which can be time exhaustive 
[2]. Through this deep learning network, one can 
transform an image by altering its stylistic elements 
without any prior artistic experience. Generative 
adversarial networks have a long list of real-world 
applications. This includes the generation of image 
datasets, realistic images, cartoon characters, and 
various aspects of photograph enhancement [3].  
 
1.2 Related Works  
 
The 2017 paper by J.Y Zhu et. al focuses on unpaired 
image translation using cycle-consistent generative 
adversarial networks. They engineered an approach 
that allowed one to translate a source image into a 

target image without the need for paired examples [2]. 
The foundation of the model depends on the 
adversarial loss and cycle consistency loss. It makes 
use of two generators and two discriminators that are 
consistently at battle with one another which brews the 
adversarial relationship. As the generator generates 
images for the discriminator from an input dataset, the 
same image is then put through a secondary generator 
that attempts to revert the image back to the original. 
The cycle consistency loss is an important aspect of 
the overall accuracy of the GAN. Their model handled 
the change in colour and texture very well, but 
geometric changes seem to be a challenge [2].  
 
1.3 Problem Definition 
 
The goal of this work is to create a cyclic GAN 
framework that maps landscape and architectural 
photographs to impressionist paintings similar to the 
works of French painter, Paul Cezanne. Due to the 
adversarial nature of the framework, standard ML 
assessment metrics such a loss and accuracy are less 
applicable. This is because the goal of each generator 
is to increase the loss of its respective discriminator 
vice-versa. GANs are a set of machine learning 
frameworks in which two neural networks, a 
generative (or ‘generator’) and a discriminative (or 
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‘discriminator’) network, compete in terms of the 
distribution of data. The generator maps data from a 
dataset to a data distribution of interest, while the 
discriminator takes this mapped data and tries to 
determine whether it coincides with the true data 
distribution. The goal of the generator is to increase 
the error rate of the discriminator, this makes the 
framework adversarial and greatly improves model 
accuracy [4]. A cycle GAN can be used to demonstrate 
the ability of an ML model to recreate creative tasks 
such as to create paintings from architectural 
landscapes.  

 
Figure 1: Components of a Cycle General Adversarial Network 

2. METHODOLOGY 
 
2.1 Data Collection 
 
For image translation utilizing a CycleGAN two 
distinct datasets are required. The first data set 
contains data in the original format, in this case, real 
landscape photographs. The second data set contains 
our target format, Cezanne artwork. TensorFlow’s 
built-in data set, Cezanne2Photo, was put into use 
providing training and test data split into both 
previously mentioned required sets. 
 

 
Figure 2: Dataset Contents 

2.2 Generator Network 
 
The generators are structured following the U-net 
structure described in the paper “U-Net: Convolutional 

Networks for Biomedical Image Segmentation” [5] 
where an image follows a series of down-sampling and 
up-sampling resulting in a remapped image. The 
generator down-samples the input image which 
consists of applying a convolutional layer and a max-
pooling layer. Each down-sample causes the image 
dimensions to change while increasing the channel 
depth. Up-sampling utilizes convolution transpose 
layers that build the image back up to the original 
dimensions and channel depth. 
 
2.3 Discriminator Network 
 
The discriminators follow a fairly standard 
convolutional neural network structure. Each 
discriminator has a series of convolutions and pooling 
layers followed by a flatten layer so that the images 
can be run through a set of dense layers that output 
whether the image is real or fake.  
 
2.4 Optimizer  
 
The Adam optimizer is utilized for the training of the 
CycleGAN, this is to take advantage of the adaptive 
moment estimation. The model was originally trained 
using the following parameters for both the generators 
and discriminators as outlined by the original 
CycleGAN paper [2]. 
 
𝛼 = 0.0002                                                         (1) 
𝛽 = 0.5                                                                (2) 
Equation 1, 2: Initial Optimizer Hyper-Parameters   

Through varying trials of training, the initial learning 
rate, alpha, was kept constant to provide an equal 
starting point for each network. The beta value 
representing the first moment of gradient descent 
decay was lowered to 0.3 for the generator networks, 
this was after the observation that the discriminators 
constantly outperformed the generators. 
 
2.5 Loss Function   
 
Two loss functions were considered when developing 
both the generator and discriminator networks. The 
first was binary cross-entropy, to fit the categorical 
nature of the discriminator networks. The second was 
the least squares GAN loss as outlined by Xudong 
Mao, et al. in their 2016 paper titled “Least Squares 
Generative Adversarial Networks.” [6]. 
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Figure 3: Binary Cross Entropy Discriminator Loss 

 
Figure 4: Least Squares Discriminator Loss 

Figure 1 shows that with binary cross entropy the 
discriminator loss quickly approaches 0 and maintains 
a low value. Figure 2 shows that with least squares loss 
the discriminator loss continues to oscillate. 
Intuitively, binary cross entropy seems to be the better 
option but because of the desired adversarial nature of 
a CycleGAN, the oscillations in Figure 2 are more 
appropriate as it shows that the multiple networks are 
improving one another. These results determined that 
least squares loss would be used moving forward. 
 
(D(x) –  1)  +  (D G(z) )                             (3)                           
Equation 3: Discriminator Loss  

(D G(z)  –  1)                                                    (4)                                                    
Equation 4: Generator Loss 

3. RESULTS AND DISCUSSION 
 

As mentioned previously, standard metrics such as 
accuracy and loss are not as applicable in the case of 
art generation as it is difficult to quantitatively 
determine whether an image passes as art. Figures 5, 6, 
and 7 display some of the generated images.  
 

                     
Figures 5,6,7: Generated Artwork 

Major points of improvement for this model and a 
point of consideration for other CycleGAN 
applications would be the resolution of the images. 
With limited hardware resources obtaining high-
resolution images became quite difficult. Aside from 
the resolution, the results are a strong indicator of AI’s 
capability to automate more creative tasks such as art 
generation. 

4. CONCLUSIONS  
 

Overall, our CycleGAN was successful in translating 
landscape photographs into Cezanne paintings. We 
achieved a desirable outcome for the loss of both 
networks and can subjectively determine that the art 
produced was acceptable. Future steps for this project 
would be to attempt using datasets from other artists. 
This would create a visual comparison of how our 
model can mirror different art styles. By doing this, we 
would have a qualitative metric for how well the 
CycleGAN can produce art. We would be able to 
compare results in many different styles, and 
eventually may be able to create more unique and 
abstract art.   
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Abstract: With the growing occurrence of natural disasters, such as wildfires, and dwindling natural resources, 
tracking the development of British Columbia’s forests is of increasing importance. The purpose of this project 
is to identify and classify human disturbances, specifically tree cut blocks, with higher accuracy (greater than 
90%) and consistency than human classification. Automatically identifying these geographic features provides a 
great benefit in terms of efficiency to technicians in the forestry and resource industries because manual 
classification is a time-intensive task. This furthers the progression in environmental technology and is a step 
towards using Artificial Intelligence to bring change in preserving and protecting the environment. Currently, an 
image segmentation algorithm using k-means clustering and a convolutional neural network model have been 
implemented to label areas where trees have been cut down from aerial images, with plans for an intuitive user 
interface. 
 
 

1. INTRODUCTION 
 

1.1 Motivation  

Identifying disturbances is a key process in forest

 ecosystem dynamics [1]. They strongly influence the 
structure, composition, and proper functioning of 
forest ecosystems [2]. They also determine the spatial 
and temporal patterns of forested landscapes [3]. 
Furthermore, disturbances are relevant factors in the 
management of ecosystems for functions, goods, and 
services [4]. These disturbances need to be found and 
classified to better understand the forest ecosystems. 
Normally these disturbances are manually classified 
by humans, but this solution is not optimal because it 
can be labour-and time-intensive. The purpose of the 
forest ecosystem analysis software is to be able to 

identify and classify tree cut blocks. The project aims 
to use object detection and image segmentation to 
create an algorithm that will classify these 
disturbances with higher accuracy and consistency 
than human classification. 

1.2 Related Works  
 
While the monitoring of forest resources is still in its 
infancy as an application of data science and machine 
learning, there have been applications of it in some 
studies

S. states. In the peer-reviewed article, Satellite 
Inventory of Minnesota Forest Resources, the team 
was able to achieve a classification accuracy of 75% 
in classifying the amount of forested area across 6 
forest classes [5]. 
 

This was done through a mix of primary sampling unit 
(PSU) sampling and disturbance classification using 
two-phase, stratified sampling. While this application 
is similar to the one discussed in this paper, the 
execution does not include any traditional machine 
vision clustering techniques. 
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1.3 Problem Definition 
 
The client uses aerial images taken from planes and 
satellites to conduct analyses of natural areas to guide 
prediction. They face the issue of having to manually 
analyze and identify human disturbances. This process 
is quite tedious and expensive. To solve this 
monotonous task, the objective of this project is to 
identify and classify tree cut blocks through the use of 
computer vision. Thus, the process of identifying the 
traits of a natural area would be automated and would 
yield a higher accuracy and consistency compared to 
human classification. Ideally the model must yield 
results that are considered accurate without the need 
for a human to verify the outcome. 
 

2. METHODOLOGY  
 

The client provided the team with aerial images in the 
MrSID file format and labels in the TIFF format. The 
aerial images were around 100 megabytes (MBs) each. 
The Python library used for reading the raster images 
is the Geospatial Data Abstraction Library (GDAL). 
 
The first solution is an unsupervised one using k-
means clustering in the Open Source Computer Vision 
(OpenCV) library. K-means clustering tries to group 
similar data points into clusters. The images were 
converted to grayscale for reduced memory 
consumption. The algorithm worked on a computer 
with at least 16 gigabytes (GBs) of memory. The 
required output cluster was cleaned using Gaussian 
filtering followed by Otsu’s thresholding. Figure 1 
shows an input image, its labels, and the k-means 
clustering output.

The other solution is using a supervised method, 
namely a convolutional neural network (CNN). The 
model is U-NET with the VGG11 Encoder. The 
images were resized and split into tiles for reduced 
memory consumption. The algorithm worked on 
Google Colab’s graphics processing unit (GPU) with 

less than 13 GBs of memory. 80 percent of the tiles 
were used for training and 20 percent were used for 
testing, and the tiles were shuffled to be randomly 
selected. Figure 2 shows a sample tile with its labels 
and model output. The tiles would have to be merged 
and resized again once the algorithm is finished.

To evaluate the proposed solutions, a confusion matrix 
from the Python library, scikit-learn, was used. The 
output was compared to the client’s labels to 

determine if overlapping pixels had the same label 
(i.e., black/positive or white/negative). Figure 3 shows 
the confusion matrix framework for this project. 

Figure 2: A sample tile (left), its labels (middle), and the predicted labels from the CNN model (right). 

Figure 1: An aerial image (left), its labels (middle), and the corresponding cleaned cluster (right). 
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Figure 3: The defined confusion matrix for this project. 

 
3. RESULTS AND DISCUSSION 

 
The accuracy, precision, recall, and F-score were 
calculated for the k-means clustering algorithm and 
the testing component of the CNN model using the 
values from the criteria matrices. The results are 
shown in Table 1. 
 
Both solutions yielded high metrics, but the CNN 
performed better. For k-means clustering, the right 
cluster has to be manually identified from all the 
output clusters, the number of clusters and iterations 
required may vary, and there is no way to ensure 
consistent results because it is an unsupervised 
method. For the CNN model, there is training 
involved, which means that more consistent results are 
possible, and there is less human interaction so the 
process can be more automatic and integrated into a 
simpler user interface. 
 

Model K-Means CNN 
Accuracy 96% 98% 
Precision 85% 84% 

Recall 71% 96% 
F-Score 77% 89% 

Table 1: Results of the k-means clustering algorithm after de-noising 
and the CNN testing subset using the values from the confusion 
matrices. 

 
4. CONCLUSIONS AND FUTURE WORK 

 
The work the team has completed so far is excellent, 
though it will need to be formalized in order to be 
delivered to the client. The accuracy scores listed 
above prove the soundness of this application, though 
these scores will need to be validated across a wider 
set of images moving forward. The CNN system will 
be implemented due to increased accuracy and 
removal of the need for user input, though memory 
constraints are an important issue to consider. 
 

Usability is also an important goal for the client, as 
users need not be experienced in programming or 
machine learning. Accordingly, the development of a 
basic user interface is also crucial for the success of 
the system. 
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Abstract: With the growing number of self-investors in the financial markets today, there must be more tools to 
help investors make informed decisions. The goal of this project is to group similar companies together and 
perform basic peer analysis and comparison on these companies. This is achieved by using various clustering 
methods to group companies together, and finally, perform analysis on these clusters through supervised 
learning and Shapley values. The attributes of each company selected to perform clustering were important 
accounting ratios to determining a company’s success - both financially and on the stock market. The final 
model uses affinity propagation clustering and produces thirteen final clusters. 
 
 

1. INTRODUCTION 
 

1.1 Motivation  
 

In 2020, more than 2.3 million Canadians opened 
investing accounts [1]. This trend was found all 
throughout North America, as the lead personal 
investing platform, Robinhood, alone saw 13 million 
new traders in the past year [2]. As a result of these 
trends, there has been a growing concern as to the 
responsibility of non-professional traders, and the lack 
of knowledge behind their investment decisions. This 
has resulted in many Canadians being placed in 
positions of high financial risk. As interest in stock 
investments continues to grow among the public, it is 
important to provide stock analysis tools to create 
more informed decisions, thus placing the public at 
less financial risk. 
 
1.2 Related Works  
 
There have been numerous attempts to build 
comparative financial analysis tools for equities in the 

stock market using machine learning techniques. In 
2015, the Marbaselios College of Engineering 
developed a clustering and regression model for stock 
prediction [3]. The research developed demonstrated 
that partitioning-based clustering performed better than 
density-based clustering and hierarchical-based 
clustering. Another similar project was developed by 
the Intel Institute of Science [4]. In the project 
developed by Intel, hierarchical agglomerative and 
recursive k-means clustering was effectively used to 
predict the short-term stock price movements after the 
release of financial reports. 
 
1.3 Problem Definition 
 
The problem tackled in this project is to develop a 
method to compare and group different publicly traded 
companies. This was achieved by employing various 
clustering models to separate and classify companies; 
as well as by determining the key financial metrics in 
each grouping. 
 

2. METHODOLOGY 
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This project was completed in three phases: data 
preparation, clustering technique experimentation, and 
supervised learning. 
 
2.1 Data Collection and Preparation 
 
A dataset from kaggle.com containing 200+ Indicators 
of US Stocks from 2014-2018 [5], was used for this 
project. This dataset was then prepared for use by 
eliminating blank “Not a Number” (NaN) value rows 
and narrowing down the number of attributes 
contained within the dataset. The accounting ratios 
(attributes) used were those that investors would most 
commonly use to assess the financial performance of 
any company as this would allow us to better analyze 
firms across industries. These would include earnings 
per share and the price-earnings ratio which most 
investors are typically concerned with. The data was 
also normalized prior to clustering. 
 
2.2 Clustering Models 
 
Once the dataset was cleansed, various clustering 
techniques were applied to it such as k-means, 
DBSCAN, spectral, agglomerative, Gaussian mixture, 
and affinity propagation. Each clustering technique 
was then compared to one another through the quality 
of the clusters generated. For example, DBSCAN 
yielded most of the companies forming in one singular 
cluster, which is not useful for the purposes of this 
project. 
 
2.3 Supervised Learning 
 
Once the most effective clustering technique was 
selected, the Random Forest supervised learning was 
trained using the cluster number as the target attribute, 
to learn more about the feature importances of the 
clusters. Shapley values were also used to further 
explain the significance behind each attribute in the 
model.  
 

3. RESULTS AND DISCUSSION 
 
3.1 Clustering Attributes 
 
The attributes (accounts/ratios) of the dataset were 
truncated to only keep the ones that were useful. The 
final list of accounting ratios used for clustering is 
shown in Table 1. 
 

Table 1: Accounting Ratios used for clustering the data. 

Net Cash Flow/ 
Change in Cash 

Average Payables Average 
Receivables 

Current Ratio SG&A to Revenue Days of Payables 
Outstanding 

Days of Inventory 
Outstanding 

EBIT per Revenue Debt to Assets 

Debt to Equity Payout Ratio Return on Equity 

R&D to Revenue PE Ratio Dividend Yield 

 
After cleaning the dataset and isolating for the above 
attributes, 3568 companies remained for use in the 
clustering process. 
 
3.2 Clustering Methods 
 
The clustering methods experimented with were k-
means, DBSCAN, agglomerative, spectral, Gaussian 
mixture and affinity propagation. Of the following 
techniques only Gaussian mixture and affinity 
propagation yielded distinct clusters between the 
companies due to the large variation within the 
normalized data. The unsuccessful techniques yielded 
most of the companies forming in the same cluster or 
the marking of most data as noise. 
The affinity propagation clustering method works by 
comparing the different data points within the data to 
each other using matrices. When two points attributes 
are similar enough, they form a criterion matrix for the 
newly formed cluster which other data points must 
satisfy to join this cluster. This method eliminates the 
need to specify the number of clusters and different 
numerical metrics. 
The affinity propagation clustering formed 46 clusters 
and had a silhouette coefficient score of 0.367. Some 
of the clusters formed with limited data points which 
indicated noise within the data. These clusters were 
filtered out and resulted in 13 distinct clusters.

 
Figure 1: Results from affinity propagation clustering. The cluster 
number is on the left and number of companies in each cluster is on the 
right. 
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3.3 Random Forest and Shapley Values Analysis 
 
After the formation of the clusters, they were analyzed 
using a combination of random forest and Shapley 
values to identify the dominant features. The random 
forest gave a very high accuracy score of 94.74% in 
identifying which cluster each company belonged to. 
The most influential features in the formation of 
clusters were debt to assets, current ratio, and debt to 
equity. 

 
Figure 2: Contribution of features to the formation of different clusters. 

Shapley values incorporate the model produced by the 
Random Forest algorithm to measure the contribution 
of a feature in each cluster individually. This is done 
using coalition game theory, by measuring the 
importance of each attribute to the predicted value [6]. 
An example can be seen in cluster 5, where most 
pharmaceutical and research companies were grouped. 

 
Figure 3: Sample results for cluster 5. 

4. CONCLUSIONS AND FUTURE WORK 
 

Without time constraints, further expansions to the 
project can be considered. 
The first consideration would involve examining the 
companies within each cluster at a far more granular 
level to get a better understanding of their financial 
structures and the industries they operate in. This 
would allow the algorithm to further refine each 
industry cluster and identify closer similarities 
between companies within the same cluster. 
The second application would be the analysis of the 
relative importance and impact of qualitative financial 
information on investment decisions. This analysis 
relies on non-quantifiable information such as 
management expertise, industry cycles, the strength of 
research and development, and labor relations [6]. 
Natural language processing can be applied to analyze 
textual data taken from management letters, financial 
statement notes, and other disclosed company 
announcements. 
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Abstract: To combat rising health care expenses and wait times across Canada, our team in conjunction with 
Kingston Health Science Center developed a time series forecasting model to predict hospital bed occupancy. 
Using Facebook’s Prophet library as a framework, the model was trained and tested with Kingston General 
Hospital occupancy data and turned into a web application for easy administrative use. Forecasting 365 days 
in advance the model displayed a mean absolute percentage error of 10.34 and a root mean square error of 
11.31. Overall, the model effectively predicted bed occupancy and can easily be implemented by the Kingston 
Health Science Center to help prepare for surges as well as make their schedule more efficient. 
 
 

1. INTRODUCTION 
 

1.1 Motivation  
 

Canada has a hospital bed problem. The country ranks 
34th in available hospital beds [1] and has a funding 
model that financially punishes hospitals for operating 
over capacity. These factors contribute to high patient 
wait times [2], overworked nurses [3], and 
underfunded hospitals. Many of these issues could be 
mitigated if hospital administrators had a better 
understanding of occupancy trends. Knowing how 
many patients to expect would allow the hospitals to 
move patients to less busy facilities, schedule an 
appropriate number of nurses, and save the hospitals 
thousands of dollars per bed [4]. Our goal is to create a 
time series forecasting model that can predict hospital 
bed occupancy accurately and easily be implemented 
by health care administrators. 
 

1.2 Related Works  
 
This program is a continuation of a QMIND project in 
2020 with the same objective. That team used an 
autoregressive integrated moving average (ARIMA) 
model and was able to achieve extremely accurate 
results. Unfortunately, their model required being 
retrained daily which inhibited its ability for long term 
predictions. 
 
1.3 Problem Definition 
 
To maximize capability, hospitals need to know how 
many patients to accept each day. This information 
will allow them to schedule elective surgeries 
efficiently, know how many employees are needed, 
and prepare for expected surges. By expanding 
forecasting models to predict long term bed occupancy 
hospitals will have useful information to help optimize 
their operations. 
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Figure 1. Comparison of predicted (Blue) vs. actual (Orange) bed occupancy at Kingston General Hospital 
from April 21st, 2014 to March 31st, 2018. 
 

2. METHODOLOGY 
 
The Kingston Health Science Center provided 
occupancy data from Kingston General Hospital 
between April 2014 and March 2019. Each 
observation included the date, admissions, discharges, 
day of the week, as well as if Queen’s University was 
in session or on holiday. 
 
This data set trained a time series forecasting model 
built on python with Facebook’s Prophet library. The 
Prophet neural network was developed by Facebook to 
predict groups users would likely join based off their 
page likes and expressed interests. We chose Prophet 
because of its forecasting proficiency and it seamlessly 
integrating with our web application. The algorithm 
trained multiple times using different combinations of 
variables to find the most accurate forecasts. 
 
Accuracy was calculated by comparing the predicated 
and actual occupancy over the course of 365 days. 
 
Finally, a user-friendly web application was built that 
allows the model to be retrained on new data as well as 
forecast occupancy data for any specified time frame.  
 

3. RESULTS AND DISCUSSION 
 
Table 1. Statistical results from 365-day forecast using 
Prophet model. 
 

 Mean Absolute 
Percentage Error 

Root Mean 
Square Error 

365 Day 
Forecast 10.34 11.31 

 

 
 
Figure 2. Comparison of predicted (Blue) vs. actual 
(Orange) bed occupancy at Kingston General Hospital 
from January 1st, 2019 to March 31st, 2019. 
 
The 365-day forecast had a mean absolute percentage 
error of 10.34 and a root mean square error of 11.31 
(Table 1). 
 
The statistical results suggest the model can accurately 
forecast bed occupancy 365 days in advance. The four-
year forecast (Figure 1) shows the model generally 
follows monthly trends including a sharp decrease 
during the December holidays and a gradual increase 
after Canada Day. Furthermore, the smaller three-
month forecast (Figure 2) demonstrates the model 
takes weekly trends into account with Sundays usually 
being the least busy day. These figures also display 
limitations to the model, particularly that it always 
predicts a seemingly average number of patients. The 
four-year forecast shows an occupancy spike in April 
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2016 which the model failed to detect. This is partially 
due to the nature of hospitals with accidents occurring 
randomly causing a surge of patients, however, the 
model does not have access to what each bed is being 
used for which could give insight into why those 
spikes occurred and if they could have been predicted. 
Keeping these limitations in mind the model is not 
accurate enough to replace human judgement and 
automate the hospital’s schedules, however, is 
effective enough to be a useful tool to augment 
administrator’s expertise and should help optimize 
operations. 
 

4. CONCLUSIONS AND FUTURE WORK 
 

This project attempted to create a time series 
forecasting model that could accurately predict 
hospital bed occupancy. Using Facebook’s Prophet 
library, the team built and trained a model that could 
forecast bed usage 365 days into the future with a 
mean absolute percentage error of 10.34. Although the 
model had difficulty anticipating large surges it was 
effective at predicting monthly and holiday trends. 
Ultimately, the model achieves its goal of effectively 
predicting hospital bed occupancy. 
 
Future forecasting efforts should research occupancy 
of different departments within the hospital. Knowing 
which beds are being used could provide the model 
valuable information to better predict surges and 
generally improve the model’s accuracy. 
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Abstract: In our modern age, the extent of data collection is ever increasing. Being able to leverage this 
information has led to great improvements in overall user experience. An obvious example would be the 
“customers also bought” feature on Amazon. This is a recommender system and helps tailor the experience to 
the user, promoting engagement and convenience. Unfortunately, high quality recommender models are 
cumbersome to implement. To solve this, we have created a library called Happy Recommender which 
streamlines the implementation of recommender models. The project is built on Tensorflow and implements a 
state-of-the-art model in a matter of lines of code. This project serves as a high-quality foundation and from 
there will be developed further with client Vennify Inc., to improve performance, usability, and value, to help 
the project contribute to, and create impact within, the AI community. 
 
 

1. INTRODUCTION 
 

1.1 Motivation  
 

Looking at the modern digital world, many products 
and services leverage abundant data to tailor the user 
experience (UX). A 2013 article titled “The 
Importance of Personalization in E-Business 
Environments” outlines the advantage of data driven 
UX optimization and it covers successful examples 
such as, Facebook’s “people you may know”.  
 
Under the hood, these optimizations are driven by 
recommender systems, but due to performance 
constraints in their typically web-based applications, 
these have formerly been simple user segmentation 
models and shallow pattern matching or rule-based 
techniques [1]. However, recent advances in deep 
learning have led to deep recommender systems, 
generating state-of-the-art results, more effectively 
incorporating contextual information [2]. 
 
Given the importance of these systems in modern UX, 
we wanted to implement a deep recommender system 
for a new social media app Kaku and were met with 
the complex task of implementation. So, the scope was 

altered to create a library to streamline the 
implementation of state-of-the-art recommendation 
systems. 
 
1.2 Related Works  
 
Upon initial research into methods and tools to use to 
develop this tool, Python and Tensorflow were 
selected as the foundation. Shortly into development, 
Google released the Tensorflow Recommenders 
library which initially seemed to encompass the project 
goals but was largely a convenience library, still 
requiring much of Tensorflow’s boilerplate code to use 
effectively [3]. 
 
Further into development we came across a similar 
tool, Tensorrec. It accomplished a very similar project 
goal but was built on an old Tensorflow methodology 
(directly manipulating graphs) and unfortunately, has 
since also been deprecated [4]. Inspiration for the 
user’s interaction with library was drawn from this 
project, in terms of what methods make sense to 
expose.  

 
1.3 Problem Definition 
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The power of recommender systems is made apparent 
by their essentiality in modern UX and yet, the few 
existing tools, are too complicated for amateurs or lack 
streamlined implementation. 
 
The team aimed to create an open-sourced library 
which facilitated usage of modern recommender 
models across a wide range of data while still being 
simple to use. We focused on implementing deep 
collaborative-filtering as it is a powerful and intuitive 
methodology which is applicable to a wide range of 
dataset tasks. This was then supported by the creation 
of high-quality documentation to further increase the 
accessibility of the library. 
 

2. METHODOLOGY 
2.1 Solution 
 
It was decided the most robust implementation would 
be a wrapper on top of Tensorflow Recommenders. As 
a google supported project, it would be a reliable 
dependency and offers the most robust functionality 
despite its relative difficulty to use.  
 
To simplify usage, Happy Recommender uses 
reasonable default parameters and object-oriented 
programming (OOP) to minimize the boilerplate code 
required from the user. When Happy Recommender is 
initialized with a dataset, all data processing and 
splitting, model definition and compiling is handled, 
and a compiled model is returned to the user. From 
there a user need only specify the quantity of training 
epochs, then the trained model is ready for evaluation 
or implementation. Should an advanced user want 
greater control over the model, many of these 
parameters are exposed as optional function inputs. 

 
Figure 1: Example of code required for usage 

 
2.2 Design Process 
 
The design process began with a wide breadth of 
research into models and datasets to ensure that the 
selected model can gracefully handle as many datasets 
as possible. A two-tower deep embedding model was 
selected, (as seen in Figure 2) as it is applicable across 
many modern datasets and is a powerful state-of-the-
art deep recommendation model [5]. From this model 
we built out the required infrastructure, namely data 
preprocessing, model training, model evaluation, and 
recommendation generation. 

 
Figure 2: Model structure 

2.3 Evaluation 
 
The project was to be evaluated on three metrics to 
determine success. First, the project’s performance 
was evaluated on the benchmark dataset, Movielens 
100K. The performance metric used was Top-K 
Categorical Accuracy, which computes, as a 
percentage, how often targets are in the top K 
recommendations. Scores were computed for K values 
of 10, 50, and 100. 
Dataset K=10 K=50 K=100 
Movielens 100K 1.10% 13.06% 27.56% 

Table 1: Top-K Categorical Accuracy of model 

Next, it evaluated on usability, which we defined as 
ease of use, clarity, and versatility of the library. A 
survey was conducted amongst our peers by providing 
them with only the library and it’s documentation.  
 
Finally the project’s impact and value was to be 
evaluated by the quantity of users the library would 
have at time of publishing. 
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3. RESULTS AND DISCUSSION 

 
For performance, the Top-K Categorical Accuracies 
achieved by the model on the Movielens 100K Dataset 
are summarized in Table 1. This is on average 233% 
better than that of a comparable non-deep 
recommendation model from early in development as 
seen in Table 2.  
 
Dataset K=10 K=50 K=100 
Movielens 100K 0.30% 7.09% 18.39% 

Table 2:Top-K Categorical Accuracy of non-deep model 

 
For usability, the average ratings for ease of use, 
clarity and versatility were 8.7, 8.4 and 7.3, 
respectively. Valuable feedback was provided by the 
survey participants on regions in which to focus 
improvements going forwards. 
 
For impact and value, due to setbacks, we were unable 
to publish the library in advance of publishing. 
However, we received very positive feedback from the 
survey participants, which suggests that this library 
will create impact and be a valuable tool moving 
forwards. 
 

4. CONCLUSIONS AND FUTURE WORK 
 

This project brought to light the ubiquity of 
recommendation systems throughout the modern UX 
will serve as a powerful tool to increase their 
accessibility.  
 
Moving forward, to improve the performance of the 
library we would implement processing of more 
contextual information which would produce more 
valuable insights. Additionally, moving away from the 
current embedding-based model could improve model 
performance on unseen data, improving generalization. 
Also we hope to broaden support of the library to 
graph datasets, which would encompass many social 
network and relational recommendation problems. 
 
Secondly, further work is required on improving 
usability. Incorporating feedback from the survey 
participants, creating more detailed and example 
driven documentation would improve learning 
efficacy. Additionally, broadening functionality in 

evaluation and exposing more parameters would 
improve clarity and versatility. 
 
Finally, the library needs to be prepped for publishing 
to PyPI, which will predominantly be tasks like code 
cleanup and the addition of a testing framework.  
 
In summary, we put together a library which 
implements a powerful recommendation model on 
your dataset in a matter of lines. Our work opens the 
door for all amateur developers to tailor their user 
experiences and gives them the tools to create impact 
with their work. 
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Abstract: Our goal was to use a decision tree algorithm to extract specific rules from a given hospital staff 
schedule. With scheduling being costly and time consuming, our algorithm extracts specific decision rules to 
ease the process. Hospital scheduling is a crucial aspect of daily planning. A company has developed a program 
that will take a set of rules from a client and create a schedule, but they were unable to devise a method to 
automatically extract the rules from a given schedule. The company typically spends hours communicating back 
and forth with clients, costing time and money. Their biggest challenge is for the client to remember all the 
workplace rules, vacations, and personal conflicts for their employees. The program we created solves this by 
extracting key rules for input. We designed a Gini impurity based decision tree to predict what job any given 
employee would perform, based on historical scheduling data. We then developed an algorithm to analyze the 
decision trees output, and extract trends based on the tree’s decision criteria at each node. Finally, the results of 
the analysis are returned in a way that is easily interpreted by a human. Our model performed with an accuracy 
of 81%. This will provide the scheduling algorithm with accurate and reliable rules, helping ease the process in 
predicting future schedules for the next respective time period. 
 
 

1. INTRODUCTION 
 

1.1 Motivation  

In recent years, the importance of accurate and 
effective hospital schedules has become evident. 
Developing these schedules for hospital employees is 
exhaustive and complex and directly affects hospital 
organizational structure [1]. Consistency must be 
maintained within all divisions of the hospital to 
ensure smooth operations. This illustrates the 
importance of a scheduling system that is able to do its 
work effectively and far in advance to meet all the 
necessary requirements for employees and hospital 
operations [1]. 

Additionally, hospital schedules have a significant 
impact on patient wait times since healthcare capacity 
must match patient demand [2]. Wait times continue to 
increase due to imbalances in the supply and demand 
chains of hospitals, and this burdens patients and 

reduces medical care quality [3]. Software has been 
developed to create the required schedule, but it is not 
yet possible to extract the rules required to create it. 
This project aims to simplify the scheduling process 
through the use of a rule extraction algorithm. Machine 
learning techniques were used to develop an algorithm 
that could extract key rules for employee schedules 
from previous schedule data. This will allow for 
simplified input into a scheduling system and ease the 
scheduling process. 

1.2 Related Works  

Rule extraction is a common machine learning 
process, but it is mostly applied to other models. One 
such example is research that has been done to 
linguistically interpret rules extracted from numerical 
data for pattern classification and use in genetic 
modelling [4]. This research, though in a different 
field, determined that simple rules can be found 
through classification approaches. After determining a 
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target rule, a classification algorithm was used for 
extraction of data [4]. Research has also been done on 
the ability of machine learning networks to conduct 
rule extraction, as a more complex form of 
classification [5]. By developing specific weights for 
layers of the network, a system can be established to 
obtain a higher accuracy output [5]. These rule 
extraction methods and the research associated with 
them were the main basis for our design process.  
 
1.3 Problem Definition 

This project aims to simplify the issue of outdated 
programs and inefficient scheduling systems by 
developing a classification algorithm to perform rule 
extraction for efficient scheduling practices. Being less 
complex and work intensive than methods like 
memetic algorithms and statistical analysis, this 
methodology will allow for an easily adaptable 
program to be created. This will allow changes to be 
made as hospital operations evolve with low effort, 
and as machine learning libraries and tools are created. 
The resultant program will extract rules from 
employee input that involve their requirements for a 
schedule using a decision tree model. These rules can 
then be coded and input into a schedule using a 
separate program. 

2. METHODOLOGY 

2.1 Dataset Manipulations 

Start 
Date 

End 
Date 

Job Member Worked 
Hours 

2021-
01-01 

2021-
01-01 

Tester 
A 

Joe 8 

2021-
01-01 

2021-
01-01 

Tester 
B 

Bart 8 

2021-
01-02 

2021-
01-02 

Tester 
A 

Zeta 8 

2021-
01-02 

2021-
01-02 

Tester 
B 

Hathy 8 

…  …  …  …  …  
Table 1: Initial data set.  

A sample of the initial data set proved from the 
company can be seen in Table 1. The data set is an 
example of a typical hospital schedule and provides 

the start and end dates of each shift, the job which the 
employee worked on that shift, the name of the 
employee, and the length of the shift. Since this base 
dataset was limited and only included five attributes 
and less than 200 entries, data augmentation was 
performed on the set. This process involved first 
replacing all date attributes with an integer 
representing the day of week, since this provides more 
insight into scheduling trends than the calendar date 
itself. Second, categorical data such as name and job 
were encoded with a numeric placeholder to allow the 
model to use these attributes. Finally, the dataset was 
interpolated and additional attributes including number 
of staff taking time off, and cumulative number of 
shifts worked were added. 

2.2 Model Development 

The proposed solution uses a decision tree classifier 
model as it allows for the model to be easily 
interpreted by analysing the criteria on which the tree 
splits the data at each node. The tree was trained 
separately to classify data set entities based on a 
variety of different attributes used as labels for the 
classification, including Day of the Week, Member, 
and Job Worked. It was found that the model 
performed with different accuracies in each case, and 
the results are summarized in Table 2. 

Target Attribute Accuracy 

Day of the week 40% 

Member 62% 

Job Worked 81% 

Table 2: Model accuracy with different data set 
attributes used as labels.  

Using Job Worked as the label in the classification 
model was selected as it provides the highest accuracy. 
Running the trained decision tree on the augmented 
data set provided the text representation seen in Figure 
1, from which trends and rules were extracted. 

3. RESULTS AND DISCUSSION 
 
Our final model performed well, with an accuracy of 
81%. We were tasked to produce decision rules for a 
set of eight sample staff members — Joe, Bart, Zeta, 
Hathy, Yolanda, Beiko, Bob, and Sally — and two 
sample jobs — Tester A and Tester B. A few insights 
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from our decision tree for this particular example are 
as follows: 
 

1. Joe, Bart, and Zeta tend to work as Tester A. 
2. Hathy, Yolanda, Beiko, Bob, and Sally tend to 

work as Tester B. 
3. Yolanda, Beiko, Bob, and Sally tend to work as 

Tester A. 
 

Figure 1 shows a visual representation of the pertinent 
decision tree produced. 

 
Figure 1: Outputted Decision Tree.  

Over the course of the project, the team discovered 
that the dataset was best suited for a prediction 
attribute of Job Worked by a particular member (i.e. 
Tester A or Tester B). Our work could be further 
improved by converting the decision tree into an 
output that others would understand. It could also be 
improved with a larger dataset, both in terms of 
number of records and attributes. With a larger dataset, 
we can conduct prediction on several attributes and 
produce a decision tree which accounts for a variety of 
factors that might be unbeknownst to model designers. 
 
The confusion matrix for the model’s performance is 
seen in Figure 2.  
 

 

Figure 2: Confusion Matrix.  

The confusion matrix indicates that for both output 
labels, our model performed well. The model was not 
more predictive of one particular label over another.  
 

4. CONCLUSIONS AND FUTURE WORK 
 

Thus far the team has been able to create a decision 
tree algorithm model with 81% accuracy. Data 
preparation, proper attribute creation, and using the 
Gini-impurity test allowed for the model to extract 
specific rules from the given schedule.  
 
Many improvements can be made to the model. One 
modification is to allow the model to handle larger 
datasets with more variables and still output the same 
level of accuracy. Furthermore, creating a general code 
to convert the output of the tree to a coherent set of 
rules would allow for others to grasp a better 
understanding of our model. 
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Abstract: The intention of this project was to apply machine learning on data collected from an Apple Watch to 
predict various human activities. The results provide a stepping-stone to bringing activity recognition by smart 
watches to being applied in sports analysis. There were five different activities that data was collected for 
including jumping jacks, walking, baseball swings, basketball dribbling and basketball shooting. The data was 
analyzed to look for potential ways of differentiating these activities. To approach the problem, a long short-
term memory model and random forest model were developed to predict the recorded activities. The results 
from each model were compared and had promising measurements of accuracy of over 90%. 
 
 

1. INTRODUCTION 
 
1.1 Motivation  

 
Data analysis in sports, typically referred to as “sports 
analytics”, has started to play an integral role for many 
professional teams and will soon reach an estimated 
market size of $4 billion [1]. Data collection can help 
teams win games, decide which players to roster and 
increase their consumer engagement [1]. In 2015, 
Major League Baseball implemented a tracking 
technology known as Statcast, which uses a radar and 
camera system to analyze player and ball movements 
at 20,000 frames per second [2]. However, statistics 
can only take teams so far. While Statcast is able to 
analyze player speed, position, and distance from a 
particular location, it cannot access precise player 
movements [2]. The next logical step would be human 
activity recognition (HAR) using wearable technology, 
which would allow for more acute analysis of player 
activities. 
 
Thus, it was set out to develop a model that will be 
able to identify various activities with the purpose of 
application to sports analysis. This model will take 
input data from wearable technology, opening the door 
for live data collection and real-time breakdown during 
training and games.  

 
1.2 Related Works  
 
Other researchers have previously used HAR to 
analyze sports. Zhuang and Xue used a sliding window 
approach to segment data and a convolutional neural 
network (CNN) to analyze sports data in two 
classifications – non-periodic activity with complex 
motion states and weakly-periodic activity with 
complex motion states. Their model preformed with an 
average recall of about 95%, indicating the success of 
the sliding-window approach. For future work, they 
recommended smartwatch implementation of the 
model to achieve live results for real-world 
applications [3]. 
 
In another application, Hendry et al. worked on HAR 
as a way to analyze the movements of ballet dancers in 
an attempt to limit the development of musculoskeletal 
pain disorders. Their data was manually annotated to 
classify specific movements into classes before being 
put into a fixed window of 1 second with a 75% 
overlap. Using a CNN, their model preformed with 
97.8% accuracy at the primary level of classification. 
Self-identified gaps in their research included using 
only female dancers and limiting HAR recognition to 
simple jumps and leg lifting [4]. 
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1.3 Problem Definition 
 
As outlined in the above sections, HAR is becoming a 
very popular area of research in sports analysis due to 
its applications in performance improvements and 
athlete health. This is not the first project that will 
attempt to classify sport activities. With the knowledge 
of past research done in the field, the team was able to 
gain a good understanding of what is possible to 
accomplish within the given time period. Additionally, 
this work allowed for essential research into the best 
type of data collection process and machine learning 
model. 
 
Based on prior team knowledge of artificial 
intelligence and machine learning, it was decided that 
a realistic project goal would be to implement and 
compare two types of models. Instead of sourcing a 
dataset from another source, the team agreed that it 
was feasible to collect and process data ourselves. It 
was decided that creating a front-end application for 
real-time model feedback was outside of the scope of 
the project, given time and absence of prior knowledge 
in Swift programming. 
 

2. METHODOLOGY 
 
2.1 Dataset Generation 
 
Data was collected using an Apple Watch gyroscope 
and accelerometer. To access this data from the Apple 
Watch, an app called Motion Collector was used. It 
was sourced from GitHub and was originally created 
by Aleksei Degtiarev [5]. About five minutes of data 
was collected for each of the five chosen 
classifications: jumping jacks, walking, baseball, 
basketball shooting, and basketball dribbling.  
 

 
Figure 1: Example of density plots for the X and Y signals of the 
gyroscope. 

Once data was collected, it required preliminary 
analysis and preprocessing for model implementation. 

Analysis was done by density plots for each activity 
and sensor (see Figure 1). In the case of incomplete or 
missing data, more data was simply collected to 
replace the incomplete data. After analysis, the data 
was segmented into two second windows with 50% 
overlap. Then, a feature set of 27 features was created 
from the windowed data. Finally, it was divided into 
training data and testing data to be used on the model, 
with 25% reserved for testing. 
 
2.2 Model Selection and Development 
 
The proposed solution was to develop a long short-
term memory (LSTM) model capable of identifying 
human activity from the data collected by the Apple 
Watch. This model was chosen because it of its power 
for predicting based on time series data. It was 
developed using the Keras library within TensorFlow. 
Additionally, a random forest (RF) model was 
implemented from the Scikit-Learn library for 
comparison with the LSTM. 
 
The LSTM model was trained on the windowed data 
set, while the RF was trained on the feature set. The 
results of both models were determined based on the 
accuracy of predictions against the test data sets. 
 
2.3 Additional Analysis 
 
To optimize the performance of each model hyper-
parameter tuning was carried out on each model. To 
tune the LSTM a Python library called Hyperas was 
used to determine optimal output space dimensions, 
and dropout coefficients for each layer of the model. 
The optimization of the random forest was performed 
with the Scikit-Learn library to choose the number of 
decision trees for the model. 
 

3. RESULTS AND DISCUSSION 

 
Figure 2: Precision Matrix of LSTM 
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Figure 2 above shows the precision of the LSTM 
model on the test data set after hyper-parameterization. 
The model was evaluated over eight epochs and 
struggled to differentiate the movements of shooting 
and swinging a bat. This is likely due to the similarities 
between these two motions leading to similar data 
windows from the Apple Watch accelerometer and 
gyroscope. 
 

 
Figure 3: Precision Matrix of Random Forest 

Figure 3 displays the precision of the random forest 
model when run on the test data set. After hyper-
parameterization, it was determined that the optimal 
forest size contained fifty trees. This model performed 
very strongly in recognizing four of the five human 
activities, but similarly to the LSTM model, struggled 
to recognize shooting. Once again, this is likely due to 
similarities with other motions. 
 

Model Accuracy   
LSTM 94.44 %   

RF 96.32 %   

 
Table 1: Results of the evaluated models 

Table 1 summarizes the results from each model. The 
LSTM model, which was originally expected to be the 
stronger model, was outperformed by the random 
forest model. This is likely due to the set of 27 features 
developed for the RF model which allowed for more 
correlation between the data to be found. However, 
both results have quite high accuracy and exceed the 
original project goals of 80%. 
 

4. CONCLUSIONS AND FUTURE WORK 
 
The ability to correctly predict movements based only 
off the accelerometer and gyroscope measurements 

from an Apple Watch is quite promising and has 
possible applications in the realm of sports analysis. 
 
In the future, there are several steps to be taken to 
improve the results of this project. This most 
immediate step would be to implement an iOS 
interface allowing for real-time recognition of the 
watch wearers activities. This an essential component 
of being able to apply this project in sports analysis. In 
addition to real-time recognition, there must be more 
classes introduced to each model. Currently the five 
classes cover a diverse number of sports, but it would 
be beneficial to introduce various motions from the 
same sport, once again brining the project closer to 
applications in sports analysis.  
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Abstract: For job seekers around the world, the recruiting process can be a daunting and nerve-raking 
endeavour, particularly when it comes time for an interview. To better prepare jobseekers, the authors have 
partnered with a Waterloo-based start-up, that provides feedback on mock interview tailored to the role(s) they 
are applying for. Evaluating an interview is often very subjective, with a successful interview incorporating a 
wide range of factors, including accurate content, engaging delivery all supported by appropriate non-verbal 
communication. The complexity and intricacy of an interview makes it difficult to provide consistent and 
scalable feedback. As such an AI solution was developed, that evaluates an interviewees confidence to provide 
feedback based on their non-verbal communication. With a computer vision model capable of scoring 
confidence in a mock-interview, it is possible to provide feedback to users, while simultaneously ensuring 
scores are consistent and replicable.  
 
 

1. INTRODUCTION 
 

1.1 Motivation  
 

For job seekers around the world, the recruiting 
process can be a daunting and nerve-raking endeavor, 
particularly when it comes time for an interview.   
 
Interview preparation for most typically consists of 
doing research on the company and preparing for 
behavioral or technical questions. One aspect of 
preparation that is often overlooked in this process is 
the delivery of content and non-verbal communication.  
 
Since interview preparation is often done individually, 
people tend to focus more on the content of their 
responses rather than the delivery. As a result, despite 
answering questions correctly, candidates may be 
overlooked due to poor engagement and delivery.  The 
complexity and intricacy of an interview makes it 
difficult to provide consistent and scalable feedback.  
 

As such an AI solution has been developed, that 
evaluates an interviewees confidence to provide 
feedback based on their non-verbal communication. 
 
1.2 Related Works  
 
At the moment, limited tools exist with the focus of 
providing feedback on nonverbal communication. One 
similar platform that offers interview preparation is 
‘Big Interview’. The platform offers hands-on practice 
with mock interviews tailored to the specific industry, 
job, and experience level. This platform emphasizes 
heavily on the content of the response rather than the 
execution and delivery. 
 
1.3 Problem Definition 
 
To better prepare job seekers, the authors have 
partnered with a Waterloo-based start-up that provides 
feedback on mock interview tailored to the role(s) an 
individual is applying for. At the moment, the Ace 
platform allows users to sign up and selects their 
desired field to prep for. The recorded interview is 
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then evaluated by the Ace founder on different criteria 
and feedback is then returned to users with actionable 
insights to improve their interview skills. The key 
problem here is that this manual process severely 
limits Ace’s ability to scale their platform. 
Additionally, this manual process may result in 
unintentional bias and inconsistent scoring. 
  
With a computer vision model capable of scoring 
confidence in a mock-interview, it is possible to the 
ability to provide feedback to their clients, while 
simultaneously ensuring scores are consistent and 
replicable. For the partner, this is an important step in 
developing a scalable platform while numerous 
extensions of this application emerge, particularly for 
firms looking to reduce bias and human capital 
requirements for their own hiring processes. 
 

2. METHODOLOGY 
 
From preliminary discussions with the client, it was 
identified that the video analysis portion of the 
interview process would be optimized. To analyze the 
video, two solutions were explored. 
 
2.1 Facial Point Landmarks 
 
The first consisted of creating a model to analyze the 
movement of facial data points. The data collected 
from these points would then be filtered through the 
scoring program to give feedback. Facial landmarks 
are classified using a pre-trained ensemble of 
regression trees leveraging Python libraries including 
OpenCV, dlib, and TensorFlow. 
 
2.2 Facial Emotion Recognition 
 
Another solution that was researched is the Facial 
Emotion Recognition (FER) model. This 
Convolutional Neural Network (CNN) was developed 
using the Python libraries OpenCV and TensorFlow. 
Using the Haar Cascade classifier and a dataset of over 
seven thousand emotion labelled images, the model 
can identify facial expressions in a video stream.  The 
corresponding emotions are shown in real-time above 
the user’s head. 
 
2.3 Model Analysis 
 
The solutions were combined to create a dually 
functional model that would output two forms of data, 

as seen in figures 1 and 2 below. The data collected 
from the joint model is then inputted into the result 
scoring program to summarize feedback for the user as 
seen in figures 3 and 4 below. 
 

 
Figure 1: Facial Landmark Detection 

 
Figure 2: Emotion Recognition 

 
3. RESULTS AND DISCUSSION 

 
The first component of the solution involving facial 
landmark detection, leverages a pre-trained ensemble 
of regression trees outputting the x and y coordinates 
of each facial landmark in a given frame of a recording 
interview. The model is capable of identifying the 
correct pixel location for each facial landmark, to the 
extent a human would be able to accomplish.   
 
The second component of the solution includes a 7-
block CNN, with each block incorporating batch 
normalization and max pooling. The first block 
includes 32 filters, growing to 256 filters in the final 
block. Following the convolutional layers, the model 
includes 3 dense layers followed a output layer with 5 
outputs nodes. 
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Figure 1: Results of the first 10 facial landmarks in the first ten intervals of the video. 

 
Figure 2: Results of the total facial emotions during the video. 

The classification report of the emotion recognition 
CNN model is summarized in Table 1 
 

Emotion Precision Recall 
Angry 0.53 0.59 

Happy 0.79 0.86 

Neutral 0.32 0.22 

Sad 0.56 0.52 
Surprise 0.69 0.83 

 
Table 2: Emotion Recognition Classification Report 

While the overall accuracy is just over 60% the 
model’s tendency is to classify emotions as neutral, 
resulting in only expressive emotions to be classified 
beyond neutral. 
 
The final component of the solution is tracking the 
output of the two models to provide feedback to users. 
With the facial landmark model, the x and y 
coordinates are recorded for each frame or about 22 
times per second. After the coordinates are identified 
the total displacement is calculated. Leveraging 
academic research in the neuroscience field, it was 
found that increased levels of movements are linked to 
nervousness and anxiety, which can be provided as 
relevant feedback to users. 
 
The emotion recognition model tracks the classified 
emotion for each frame of a recorded interview and 
then finds the proportion of each emotion throughout 
the interview to use in the scoring algorithm. 
 

4. CONCLUSIONS AND FUTURE WORK 
 

With the implementation of the emotion recognition, 
and facial detection models, the model was able to 
successfully gather some key data on an interviewee 

during an interview. However, the data is not perfect, 
and steps need to be taken to analyze the data properly 
and apply a proper score to the interview. 
 
Currently the emotion recognition model is only 60-
70% accurate and has a tendency to classify emotions 
as neutral. To improve its functionality in the grading 
process, a more accurate model is beneficial, alongside 
a more diverse set of emotions to classify. This will be 
accomplished by expanding the training data used, and 
by exploring methods to improve the classification 
accuracy such as ensemble methods. 
 
Additionally, although the movement of key facial 
landmarks are tracked over time, it has not 
implemented this into the scoring. To optimize the 
scoring system, the movement of facial features will 
need to be assessed over time and with the findings 
implemented into the scoring algorithm. Fully 
incorporating the aforementioned improvements will 
make the grading system much more substantial and 
accurate. 
 
Finally, the functionality of tailoring feedback to the 
desired role of a particular candidate, as different roles 
may be more receptive to different emotions displayed 
by candidates.  
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Abstract: Product classification is extremely important for e-commerce companies for the customer experience,
but it can be hard to get it right when trying to classify hundreds of thousands of products from disparate
sources. Using machine learning and Natural Language Processing techniques, the process of classifying new
items into a product category can be automated. With these tools, we were able to create a product classifier
that separated products in the Loblaws product catalogue into their correct category at an accuracy rate of
~90%. This system could improve Loblaws manually constructed product categorizations and many aspects of
the business and customer experience.

1. INTRODUCTION

1.1 Motivation

Online shopping is a fact of life for most consumers
today, especially during the COVID-19 pandemic. To
run a successful online business, a company must
optimize the user experience, provide relevant search
results for desired products, and ensure that the site
can be found easily through search engines like
Google [1]. This can be difficult when an online shop
has to organize thousands of products from different
vendors.

All of these issues can be helped by using product
categorization. By classifying products into a
taxonomy, the platform can associate products with
keywords and better organize their products for search.
This is key for improving the customer experience.

Product categorization becomes hard to manually
maintain as the number of products a company carries
expands quickly. Classifying new products becomes
laborious and requires in-depth knowledge of the
product hierarchy. Machine learning classification
techniques can help with product classification,

automating insertion of new products into product
taxonomies.

1.2 Problem Definition

The Canadian grocery chain Loblaws manages
thousands of products in their catalogue. Each of these
products need to be categorized into Loblaws custom
product taxonomy. It’s extremely important that
products are categorized correctly, because a mistake
in classification is hard to find and can cause errors for
the business and can make products harder to find for
customers on Loblaw’s online platform.

Using features associated with each product, like a
products title and description, we aim to create a
machine learning model to classify products in the
Loblaws catalogue, and make predictions on brand
new products that have no prior sales history. To
achieve this, we must use techniques from Natural
Language Processing (NLP) to parse the unstructured
data in the product titles and descriptions into a form
that is useful for our models. We must also take into
account the hierarchical structure of our data when
considering our model’s accuracy and other metrics to
assess our model’s performance.
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Figure 1: A bar graph showing the imbalance in the dataset between
different product categories.

2. METHODOLOGY

The online branch of Loblaws, Loblaw Digital,
presented our team with a product catalog of over
120,000+ products. Each product in the dataset had a
title, a product description, a unique identifier, and an
MCHID, which represented where the product
belonged in the product taxonomy.

articleID MCHID NAME Description

20433433_AB M12345678 Spam Bacon Ready to eat -
cold or hot

Table 1: An example data point from our dataset ofLoblaws products.

For the majority of our models used for our problem,
we needed to parse the product descriptions using NLP
techniques to allow for machine learning models to
train on the information that they are given. This
process starts with standard text pre-processing steps,
which helped in removing noise from our data. These
processing steps included merging the titles and
descriptions into a single text, removing unhelpful
strings from the text (ie. stop words like “the” and “a”,
HTML tags, special characters), and applying
lemmatization to the tokens (replacing inflected forms
of a word so they can be analysed as a single item, ie
changing playing, plays, or played to play).

After cleaning the data, we then needed to convert our
data into numerical features that a machine learning
model could understand. For this, we used the
Bag-of-Words (BoW) approach to convert the text into

a vector which represented the number of times a word
had been used in the text [2]. We used this method
because it allowed us to simplify the problem down to
the simple presence of a word. This method doesn’t
rely on the local context of the words like Word2Vec
or GloVe, which was useful because the text we
worked with didn’t follow consistent formats. BoW is
also very simple for human understanding, which
allows us to directly determine the importance of
words in our model. We were also able to leverage
sklearn’s HashingVectorizer to reduce the memory
usage of our vectorization algorithm, and to allow our
model to allow for our model to add new words to its
vocabulary, should the model be re-trained in the
future [3].

To begin our analysis, we trained our models on only
the highest levels of the hierarchical structure,
meaning that we tried to identify the broadest levels of
categorization. This meant the team could immediately
work on the project without having to deal with the
hierarchical structure of the data, but this model would
only have value for the team as an exploratory step.
The uniqueness of the hierarchical classification meant
that commonly used metrics for model performance
like accuracy, precision, and recall would not express
the true performance of the model. These “flat”
evaluation metrics do not capture how some classes
have a stronger relationship than others - for example,
if our model misclassified a fruit product as a
vegetable, this outcome is better than if the model had
misclassified the item as a grain product, which is still
better than an incorrect classification as a non-food
item. To regulate for these outcomes, we used
hierarchical precision and hierarchical recall as our
metric to judge these deeper models [4].

3. RESULTS AND DISCUSSION

We have trained most of our models on the broadest
category as mentioned in the Methodology section.
Using our transformed dataset, we trained many
machine learning models using SciKit Learn and
Keras. We found that three of our models performed
the best: Multinomial Logistic Regression and
Random Forest from scikit-learn, and Recurrent
Neural Network (RNN) using Keras.
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Model Accuracy

Random Forest 86.07%

K-Neighbors 82.13%

Naive-Bayes 76.43%

Support Vector
Machines

84.26%

Recurrent Neural
Network

91.06%

Logistic Regression 85.27%

Table 2: Results of our models trained on the highest levels of the
hierarchy structure, with the most promising models highlighted in bold.

The model with the best accuracy is RNN, with an
accuracy of 91.06%. While Logistic Regression is not
performing as well as RNN or Random Forest, it offers
the benefit of being straightforward and offering an
implementation of Kesler’s Construction (using
softmax regression) that allows for a single model to
be trained for multinomial classification, unlike the
other methods that use a One-vs-One or One-vs-Rest
approach [5]. This method has also been implemented
successfully by other data science teams [6], and so we
will continue with this model in our testing on the
lower levels of the hierarchy.

The performance of these models is promising,
showing that we may be able to move these models
down to the lowest levels of the product hierarchy
successfully. A successful classifier would return the
top N most likely classes that a given product belongs
to given its name and title, and would classify based
on the most granular classification level.

4. CONCLUSIONS AND FUTURE WORK

We have many ideas for how we can improve our
machine learning models in future work. Our models
will continue to be optimized to classify on the lowest,
most granular levels of the hierarchical structure,
which is where the most value will come from for the
business. In the coming weeks we will be
implementing this functionality on the model using the
techniques we found effective at higher levels and
using our hierarchical performance metrics. We also
see value in using oversampling techniques to address

the issue of large imbalance between classes in the
dataset.

We will also make the model production system ready
by wrapping all of our functionality in
well-documented classes, and by implementing a
server in Flask that will allow any system at Loblaw
Digital to make a request to our model for
classification.

In conclusion, our group has created a fully fleshed out
approach to the problem of product classification for
an e-commerce site. With our product, Loblaw Digital
will be able to provide a better experience for both
their online customers and their vendors. We found
that this type of product could bring value to any
e-commerce site with a large product catalogue.
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Abstract: The volatility of the Stock Market is an important factor that should be taken into consideration when 
trading options. Previous research has shown that using machine learning techniques, predicting volatility can 
lead to positive returns. Using the CBOE Volatility Index (ticker: VIX), a time-series ARIMA model was used to 
forecast the volatility of the S&P 500. Using the predictions, options trading strategies were recommended based 
on the differences between the current and forecasted volatilities. The ARIMA model was able to obtain an AIC 
of 6665.5, and a MAPE of 7.5% on 14-day forecasts. The findings indicate that by using time-series forecasting, 
the volatility of the market can be isolated and used to generate greater alpha. 
 
 

1. INTRODUCTION 
 

1.1  Motivation 
The stock market has been a money-making tool for 
millions of people around the world. Whether it be day 
trading, investment banking, or simply placing one’s 
savings in a mutual fund, the market has helped 
countless people achieve financial freedom, or at least 
get closer to it. This, however, comes with a 
significant and possibly costly learning curve. Several 
prominent figures in the finance world have agreed 
that beating the market is always possible, but not 
probable [1]. 
 
At its foundation, beating the market comes down to 
being able to look at data, make connections and turn it 
into useful information. With the vast arsenal of 
machine learning tools available on the internet, it is 
quite possible to aggregate this data and make 
intelligent decisions from it. Nevertheless, determining 
the direction of future stock price movement is 
challenging. Using options trading strategies, traders 
can shift the focus of their analysis from predicting the 
direction of price movement to predicting the 
magnitude of the movement. 
 

1.2  Related Works  
A paper published by the engineering faculty at New 
York University discusses this problem in a similar 
context [2]. They utilize learning regression methods 
to predict the realized variance of the S&P 500. By 
developing algorithms to correct deviation between the 
VIX and the actual realized variance of the SPX, they 
were able to better predict it. It is noted that out of 
money options are more predictable and the implied 
volatility of calls have more significance in data 
manipulation. 
 
1.3  Problem Definition 
The aforementioned paper demonstrates the viability 
of using machine learning to formulate accurate 
predictions about the market. Our exploration, 
however, takes a slightly different approach.  
 
Options contracts are derivatives of regular securities 
and present traders with the ability to capitalize on 
both upward and downward movements in the market. 
They represent an agreement to purchase or sell shares 
of a given stock at a pre-defined price before a set 
expiry date. Using different contracts simultaneously 
allows investors to formulate strategies that can 
mitigate risk. These strategies can be constructed in 
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such a way where the trader sees a profit if the 
underlying stock price moves significantly, regardless 
of direction. Strategies can also be built such that a 
profit is made if the underlying stock price moves very 
little. In other words, options trading strategies allow 
traders to shift their focus from predicting the direction 
of stock price movement, to predicting the magnitude 
of the movement, represented by the stock’s volatility. 
 
This study analyzes the volatility of the VIX to extract 
a prediction as to the strength of the market in a given 
future period. Then a decision-making algorithm 
outputs an appropriate options trading strategy that 
reflects the model’s view on future volatility. 
 
 

2. METHODOLOGY 
 
2.1  Data Exploration 
The team researched and analyzed the Chicago Board 
Options Exchange (CBOE) Volatility Index (VIX). 
The price of the VIX is obtained from the implied 
volatility of various options contracts belonging to 
securities in the S&P 500. The data was taken from 
Yahoo Finance using the “yfinance” API. This API 
allows users to scrape financial data in a specified time 
window. The model was designed to analyze the recent 
volatility of VIX to forecast the future volatility and 
determine which options trading strategy would yield 
the greatest returns.  

 
Figure 1: VIX Close Price 2010 - 2021 

Figure 1 above displays the VIX closing price since 
2010. This chart essentially represents what 
professionals think of the volatility of the S&P 500. 
The dataset’s features are ‘Date’, ‘Open’, ‘High’, 
‘Low’, ‘Close’, and ‘Adjusted Close’. The ‘Close’ 
price was selected as time-series data to analyze and to 
be forecasted. 
 
 

2.2  Proposed Solution 
The proposed solution is to use the time-series analysis 
algorithm known as an Auto Regressive Integrated 
Moving Average (ARIMA) model to predict the future 
values of the VIX. ARIMA models are a combination 
of Auto Regressive (AR), Differencing (I), and 
Moving Average (MA) models, discussed below: 
  
AR(p): Auto Regressive Model 
AR models forecast based on their own lags (a lag 
simply refers to the previous values in the time-series), 
utilizing the pth first lags (i.e.: an AR(3) model uses the 
first three lags). The equation for AR is shown below, 
where 𝑌  is the first lag of the series, 훽  is its 
corresponding coefficient, 𝑌  and 훽  are for the 
second lag, and so on, 𝛼 is the intercept term, and 휖  is 
the error term: 

𝑌 = 𝛼 + 훽 𝑌 + 훽 𝑌 + ⋯ + 훽 𝑌 + 휖  
 
I(d): Differencing Parameter 
The differencing parameter d refers to the number of 
differencing required to make a time-series dataset 
stationary (an important requirement for datasets used 
for forecasting). In this context, differencing refers to 
subtracting the original time-series by itself shifted 
backwards by one. The number of differencing 
required to make a dataset stationary determines the d 
parameter. The Augmented Dickey-Fuller test was 
used to determine stationarity. 
 
MA(q): Moving Average Model 
MA models base their current forecasts on the qth most 
recent errors (residuals) of the previous forecasts. The 
equation for MA is shown below: 

𝑌 = 𝛼 + 휖 + 휙 휖 + 휙 휖 + ⋯ + 휙 휖  

Where 𝛼 is once again the constant intercept term, 휖’s 
are the error terms, and 휙’s are the error terms’ 
constant coefficients. 
 
ARIMA(p,d,q) 
An ARIMA model formulates its prediction by 
combining all of the aforementioned models, that is, 
by using its own lags and its previous forecasts errors, 
as shown in the equation below: 

𝑌 = 𝛼 + 훽 𝑌 + ⋯ + 훽 𝑌                          
+ 휙 휖 + ⋯ + 휙 휖 + 휖          

Note how this is simply a combination of the AR and 
MA models’ equations. 
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The optimal p and q values were determined through 
visual analysis of autocorrelation function (ACF) plots 
and partial autocorrelation function (PACF) plots. 
 
2.3  Solution Evaluation 
The final portion of the solution is to suggest an 
options trading strategy. The success of the strategy 
depends on the volatility of the specified derivative. 
This means the goal of the ARIMA model is to predict 
high or low volatility. The team tackled this 
assignment by comparing the forecasted volatility 
value to the most recent volatility value. If the value is 
forecasted significantly higher, a high volatility 
strategy is recommended, and vice versa. Furthermore, 
if the volatility is predicted to remain relatively stable, 
a medium volatility strategy is recommended. An 
example of this can be seen below in Figure 2. In this 
case, the ARIMA model forecasted a lower volatility 
value than the current volatility, thus causing it to 
suggest a Married Put (low volatility) strategy. 

 
Figure 2: Example Output from ARIMA and Decision Algorithms. 

Evaluating the solution was done by having the 
ARIMA model forecast over a certain number of past 
data points with known VIX values, i.e.: predicting 
over the most recent 21-days, using all prior data 
points. The forecasted values were then compared to 
the actual values to determine its prediction accuracy 
(discussed below).  
 
 

3. RESULTS AND DISCUSSION 
 
Using the ARIMA analysis steps described above, it 
was determined that the optimal p, d, and q ARIMA 
hyperparameter combinations were (1,0,0) and (0,1,1). 
To evaluate both models, the following metrics were 
used: Akaike Information Criterion (AIC), Mean 

Absolute Percentage Error (MAPE), and Correlation. 
The AIC is a commonly used metric in statistics to 
determine how well a model fits the data it is trained 
on. The AIC favors models which use less parameters 
in order to avoid over-fitting. Models with low AIC 
are ideal. The MAPE, as the name suggests, computes 
the percentage difference between the actual and 
forecasted time-series’ values at each time stamp, and 
averages these values, returning a value between 0 and 
1. Once again, models with lower MAPE scores are 
favorable. The Correlation metric is simply the 
correlation between the actual and forecasted data 
points, where we want the correlation to be high 
between the two datasets, indicating that the forecasted 
data resembles the actual, at least in trend. The MAPE 
and Correlation metrics were selected as they are 
unaffected by the scale of the data, outputting values in 
the range [0,1] and [-1,1] respectively. Therefore, the 
scores can be easily evaluated and compared 
regardless of the magnitude of the time-series’ data. 
 
To obtain the results, we evaluated both models 
against the VIX dataset with a 14-day and 21-day 
predictions. Tables 1 and 2 summarize these results: 

Accuracy 
Metrics ARIMA(1,0,0) ARIMA(0,1,1) 

AIC 6665.5 6704.9 
MAPE 0.07521 0.11747 
Correlation 0.83650 -0.83162 

 

Table 1: Summary of various accuracy metrics for ARIMA(1,0,0) and 
ARIMA(0,1,1) models on the VIX dataset with 14-day forecast periods. 
Italicized and bolded scores indicate the favorable scores. 

Accuracy 
Metrics ARIMA(1,0,0) ARIMA(0,1,1) 

AIC 6665.5 6704.9 
MAPE 0.09874 0.09413 
Correlation 0.45685 -0.50305 

 

Table 2: Summary of various accuracy metrics for ARIMA(1,0,0) and 
ARIMA(0,1,1) models on the VIX dataset with 21-day forecast periods. 
Italicized and bolded scores indicate the favorable scores. 

As expected, the ARIMA(1,0,0) performed the best in 
most cases, with the lowest AIC scores and positive 
correlation values of 0.84 and 0.46 for 14-day and 21-
day forecasts, respectively. This indicates that the 
ARIMA(1,0,0) best fit the VIX data, and that its 
forecasts are correlated to the actual values to a certain 
degree. Although the ARIMA(0,1,1) obtained the best 
MAPE score for a 21-day lag, its correlations were 
negative, which is undesirable as it suggests that in 
most cases, the model’s predictions are in the opposite 
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direction of the actual values, which is evidently a bad 
trait for the model to have. 
 
Qualitative analysis of the forecast plots, shown in 
Figures 3 and 4, make it clear that the ARIMA(1,0,0) 
model outperforms the ARIMA(0,1,1) model as it 
provides more realistic predictions.  

 
Figure 3: Plot of ARIMA(1,0,0) model on VIX dataset with 28-day lag. 

 
Figure 4: Plot of ARIMA(0,1,1) model on VIX dataset with 28-day lag. 

The plots make it clear that the ARIMA(1,0,0) is more 
suited for the VIX dataset than the ARIMA(0,1,1) 
model, as the ARIMA(0,1,1) fails to capture even the 
slightest trend of the actual data in its forecast.  
 
Note that even the favorable ARIMA(1,0,0) model, 
which accurately forecasts the overall direction of the 
dataset, is still very simplistic. This is in part a result of 
the fact that ARIMA models (especially a (1,0,0) 
model) use very few past data points to make their 
forecast. For a dataset that has occasional large jumps 
and dips, this is a major limitation.  
 
 

4. CONCLUSION AND FUTURE WORK 
 
The team focused on stock volatility prediction using 
an ARIMA model time-series forecasting. A major 
focus of time and effort was dedicated to determining 
the optimal p, d, and q values based on analysis of data 
stationarity, ACF and PACF plots. Once these values 
were determined, the optimal ARIMA models were 
tested against historical VIX data to compare predicted 

and actual volatility to determine forecasting accuracy. 
The final solution then implemented a decision-
making algorithm which compared its forecasted 
volatility to the current volatility in order to suggest a 
favorable options trading strategy for greatest yield. 
  
Throughout the project, it was concluded that ARIMA 
models are quick and easy forecasting tools that can 
capture general trends and make reliable predictions on 
simpler and clean ‘vanilla’ time-series data. However, 
it falls short in capturing the finer details in very 
volatile and noisy datasets, which would be necessary 
to make profitable bets in the stock market. Thus, if 
you require predictions which can capture the 
subtleties of a complex dataset, you may find more 
success using a different model, such as a recurrent 
neural network (RNN). As a next step, the team would 
like to implement an autoregressive RNN, which has 
the capability of being trained on more data and allows 
past predicted values to be fed back into the model to 
refine the predictions at each step. 
  
Another next step for the project would be to run the 
model against live price data and perform real options 
trading to get real results on profitability. If the results 
of these tests are accurate, the scope of this model 
could be expanded to include different stock indexes. 
This model has the potential to be powerful if it can 
predict on a wide variety of indexes, as it could be 
used to rapidly determine which options trading 
strategy are best suited in any situation. 
 
 

5. GITHUB REPOSITORY AND DEMO 
 
https://github.com/andrewmbrown/CUCAI2021_Demo 
 
https://share.streamlit.io/andrewmbrown/cucai2021_d
emo/main/main.py 
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Abstract: Stroke prevention methods were explored because strokes are the leading cause of death in Canada 
and the number of deaths is expected to grow over the next decade. As a solution to this problem, a model was 
created to predict a person’s risk of having a stroke based on their physical traits and lifestyles. Current models 
that use facial recognition to detect strokes provide certain benefits but are less desirable than the proposed 
stroke prediction model as they cannot detect strokes before they happen. The team utilized a multilayer 
perceptron model on data containing attributes such as gender, blood pressure, and body mass index to predict 
a person's likelihood of stroke. The model was able to achieve a 96% accuracy on testing data.

1. INTRODUCTION 
 

1.1 Motivation  

Stroke is the third leading cause of death in Canada. 
Strokes are caused by the sudden loss of brain function 
that follows a brain blood vessel blockage or rupture. 
Its symptoms include loss of sensation, difficulty 
speaking, vision difficulties, headache, and loss of 
coordination [1].  

The effects of a stroke can range from mild to severe, 
and among those who survive their stroke, many never 
fully recover. According to Statistics Canada, 
approximately 36% of these survivors are left with 
significant disabilities five years after their stroke and 
more than 40% require assistance with activities of 
daily living [1]. 

In a study conducted in 2015 by the American Heart 
Association, the number of individuals experiencing 
the effects of stroke in Canada is projected to increase 
from 405 000 in 2013 to between 654 000 and 726 000 
in 2038 [2]. 

With the high rates of stroke in Canada and the 
expected growth in the next decade, the team was 
motivated to explore methods for stroke prediction and 
hence prevention. 

More specifically, different machine learning models 
for stroke detection were compared and optimized. 
 
1.2 Related Works  

There have been various studies on stroke prediction, 
including research conducted in 2018 that used images 
of facial features to determine whether a person has 
had a stroke [3]. 

They focused on the expressional asymmetry and 
mouth askew to make predictions. To classify facial 
stroke, the Support Vector Machine (SVM), Random 
Forest (RF), and Bayesian Classifier were adopted as 
classifiers. The research found that the recognition 
accuracy of SVM, Random Forest, and Bayes are 
100%, 95.45%, and 100%, respectively [3].  
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1.3 Problem Definition 

Models that use facial expressions require pictures to 
inform a patient if they are having a stroke. Rather 
than identify a case of stroke, the desired solution will 
use data on people’s lifestyles to state their likelihood 
of having a stroke. Not only is this data more 
accessible than pictures, but it can also prevent cases 
by giving patients their chance of stroke and allowing 
them to change their unhealthy habits. 
 

2. METHODOLOGY 

2.1 Data Generation 
 
Many factors affect one’s susceptibility to stroke, 
including gender, blood pressure, body mass index 
(BMI), and physical activity [4]. A dataset was 
sourced from Kaggle as it contains all the major stroke 
risk factors [5]. The dataset has 11 attributes and a 
label indicating whether each patient has had a stroke. 
 
A heatmap was used to analyze the correlation 
between all attributes and stroke. As seen in Figure 1, 
BMI has the weakest relationship to stroke, however, 
the performance decreased when the attribute was 
removed. BMI is also the only attribute containing null 
values which were all replaced with the BMI 
attribute’s mean.   
 

 
Figure 1: A heatmap used to visualize the relationship strength among 
attributes and stroke. 

2.2 Model Creation 
 
The selected model for this solution is a multilayer 
perceptron. Multilayer perceptron’s are a feedforward 
neural network that have an input layer, an output 

layer, and hidden layers. Neural networks such as 
multilayer perceptron's are useful for predicting results 
based on input data because the networks are 
structured in different layers. 
 
After some testing with other types of models such as 
an SVC model, the team chose to use a multilayer 
perceptron because it is effective at handling a wide 
range of different features. Since the stroke detection 
data has 11 attributes, the results that the team got 
from the multilayer perceptron model were better than 
other models that we tested. 
 
2.3 Additional Analysis 
 
Further modifications were done to the model to 
optimize the multilayer perceptron model’s 
performance. The number of epochs, nodes, and layers 
were varied to analyze their impact on the model’s 
behavior. All modifications were evaluated by 
comparing the model’s maximum validation and 
training scores. 
 

3. RESULTS AND DISCUSSION 
 

Model Training       Testing    
V1 0.960  0.952   

V2 0.960  0.9508   

V3 0.9544  0.9615   

V4 0.9579  0.9532   
 
Table 1: Results of the different model variations. The training values are 
the model’s accuracy during its training while the testing values are the 
model’s accuracy on the test data. 

In the first version of our model, V1, values were 
normalized using a mapping function that takes in data 
and outputs an array of unique strings. The multilayer 
perceptron had a top layer with 10 nodes, a middle 
layer with 20 nodes, and an output layer with 3 nodes. 
The model was tested with 150 epochs and a batch size 
of 30.  
 
The first version of the model demonstrated overfitting 
after 16 epochs. Therefore, the second version, V2, 
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had only 30 epochs and another middle layer with 10 
nodes. However, as seen in Table 1, the testing 
accuracy for the second version decreased. 
 
For the third version of our model, V3, the number of 
nodes in each dense layer of the multilayer perceptron 
were modified. The number of nodes in the top layer 
was equal to the number of features, two middle layers 
were added with 30 nodes and 10 nodes respectively, 
and an output layer with 3 nodes was used.  
 
In the final version of the model, V4, the number of 
nodes was changed again for the four dense layers. In 
the top layer the number of nodes was again equal to 
the number of features. There were two middle layers 
with 40 nodes and 30 nodes, and an output layer with 2 
nodes.  
 
The third version produced the highest percent 
accuracy during testing and as such was selected as the 
final model. 
 

4. CONCLUSIONS AND FUTURE WORK 
 
The team built a model that predicts a person's chance 
of having a stroke given certain inputs. Using data to 
assess a person's risk of having a stroke may help 
assist doctors in identifying people who are at high risk 
and give them appropriate advice and treatment.  
 
The next steps for the model include testing different 
learning methods such as Random Forest to determine 
which learning method is optimal for this dataset. 
Although a multilayer perceptron model was selected 
because of its efficiency at handling multiple features, 
it is important to test other models. 
 
Furthermore, the model may be improved by testing 
out different methods of data preprocessing to know 
which data is most useful for predicting a stroke. For 
instance, other inputs can be removed or modified to 
see which inputs are important to getting an accurate 
prediction. 
 
Finally, more data should be collected to construct our 
own dataset to put our model to the test against current 
data.  
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Abstract: Over the past decade, deep learning has driven great progress in computer vision and 2D image 
understanding. On the other hand, 3-Dimensional image understanding is still comparatively immature. In recent 
years, RGB-D cameras combining visual and 3D shape information have become more accessible, enabling 
progress to be made in the field. In this paper, we test the hypothesis that RGB-D object recognition models can 
improve on state-of-the-art RGB models and propose a deep learning architecture that leverages the added depth 
information. Our proposed architecture encodes depth images into a geocentric embedding and makes use of two 
independent processing streams for the RGB and depth images. We train multiple models to control for and 
validate the effects of the added depth information. Our best model achieved an accuracy of 70.1% on a dataset 
of 51 classes.  
 
 

1. INTRODUCTION 

1.1 Motivation 
The extraction of a high-level understanding of three-
dimensional (3D) images is a fundamental problem in 
the field of computer vision. 3D image understanding 
has applications in areas including remote sensing, 
mapping, monitoring, autonomous-driving, 
virtual/augmented reality, and robotics [1]. Thus, 
models which can autonomously extract high-level 
information (such as recognizing objects) from 3D 
images are in high demand. 

In past decades, similar to 2D computer vision, research 
on 3D computer vision often employed classic machine 
learning methods like Support Vector Machines and 
Random Forests. [2]. However, with the increase of 
computational power and availability of data, deep 
learning has allowed for rapid development in both 2D 
and 3D computer vision [3].  

Our focus is on 3D sensed data in the form of so called 
RGB-D images. The format consists of a pair of images; 
a standard RGB image and a depth image. Depth images 
provide additional information about the 3D structure of 
the scene, and unlike RGB images, are invariant to 
lighting and are particularly useful in background 
separation [4]. 

1.2 Related Works  
One approach to the problem is to simply stack the RGB 
and depth images generating a 4-channel image and 
employ existing Convolutional Neural Network (CNN) 
architectures. However, Gupta et. al. [5] found that this 
approach does not make the most use of the geometric 
information encoded in the depth image. 

In one of the earlier papers on the subject, Socher et. al. 
[6] proposed a CNN-RNN architecture in which CNNs 
extract low-level translation-invariant features for RGB 
and depth images independently, then RNNs generate 
high-level global features. Eitel et. al. [7] used a similar 
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approach in which two different CNNs process the RGB 
and depth images independently, then fuse the output 
after passing it through two fully connected layers. 

1.3 Problem Definition 
In this paper, we aim to build an RGB-D deep learning 
object recognition model which makes good use of the 
depth information and outperforms RGB-only models. 
As input, the model takes an RGB-Depth image pair, 
and outputs a prediction of the class of the object 
present in the image. Through this process, we aim to 
develop an understanding of 3-dimensional images in 
the context of deep learning and gain insights that pave 
the way for further improvement in future research. 

2. METHODOLOGY 

2.1 Dataset 
We used the Washington University RGB-D dataset 
containing images of 300 common household objects 
organized into 51 categories. The dataset was collected 
using a Kinect-style 3D camera. The dataset is 84 GB 
large and contains 207,920 RGB-D images [8]. 

2.2 HHA Geocentric Encoding of Depth 
Information 

In 2014, Gupta et. al [5] proposed a geocentric 
embedding of depth images which transforms single-
channel depth images into a 3-channel representation. 
This representation encodes horizontal disparity, height 
above ground, and angle with gravity for each pixel 
(referred to as the HHA embedding). In their paper, they 
demonstrated that extraction of features from HHA 
images using CNNs learned stronger representations 
and achieved higher performance than raw depth 
images. 

 

Figure 1: A sample image from the dataset 

2.3 Proposed Architecture 
We proposed and validated a deep learning architecture 
based on two independent CNN processing streams for 
the RGB and depth images, respectively. In the RGB 
processing stream, we make use of the proven ResNet50 
2D CNN model to generate an RGB feature vector [9]. 
The depth image is transformed to the HHA geocentric 
encoding, then passed through a CNN feature extractor 
that we built from scratch. The RGB and depth feature 
vectors are then fused and passed through two fully 
connected layers before generating a class prediction. 

 

Figure 2: The architecture of RGB/Raw depth model 

2.4 Evaluation 
We trained four different models using different 
combinations of RGB, raw depth, and HHA to isolate 
for the impact of each. Namely, we built and trained 
depth-only, HHA-only, RGB-Depth, and RGB-HHA 
models on our dataset.  

We split the dataset into a training and test set by 
dedicating one object instance to the test set and leaving 
the rest for training. This was done to prevent data 
leakage since adjacent frames of the same object 
instance will look very similar.  
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3. RESULTS AND DISCUSSION 

First, our results demonstrate that a deep learning model 
can achieve reasonable accuracy in recognizing objects 
in depth-only images. Our raw depth model achieved a 
test accuracy of 40.5%. Thus, depth images have utility 
beyond just providing auxiliary information to RGB 
images. 
 
Table 1: Model performances 

Model Accuracy 

Depth-Only 40.5% 

HHA-only 48.0% 

RGB w/ Raw Depth 54.7% 

RGB w/ HHA 70.1% 

 
Second, our results confirm that the HHA geocentric 
representation of depth images improves performance 
in deep learning object recognition models. The HHA-
only model achieved notably higher accuracy than the 
raw depth model at 48.0%. The effect is even larger in 
the combined RGB and depth models. While RGB with 
raw depth achieved 54.7% accuracy, RGB with HHA 
achieved 70.1%. Thus, representing depth information 
in the HHA embedding improves performance for this 
model architecture. 

 
Figure 3: Confusion matrix of the RGB-HHA model 

Finally, we examined the learned weights of the RGB-
Depth models to further assess how useful the depth 
information was to the models. We did this by looking 
at the weights of the dense layer following the 
concatenated feature vector, and compared the weights 
associated with the RGB feature vector and the depth 

feature vector. We found the magnitudes of weights 
associated with depth information to be comparable to 
that of RGB information, especially when encoded in 
HHA. 
Table 2: Statistics of learned weights 

Statistic RGB w/ Raw Depth RGB w/ HHA 

 RGB Raw Depth RGB HHA 

Mean Abs. 
Value 

0.0449 0.0243 0.0233 0.0234 

Max 0.8412 0.1694 0.0467 0.0467 

Min -0.9376 -0.1694 -0.0467 -0.0467 

Std. Dev. 0.0712 0.0286 0.0269 0.0270 

 
4. CONCLUSIONS AND FUTURE WORK 

With the utility of depth information in object 
recognition models demonstrated, future research may 
be directed at optimizing performance further and 
pursuing the maximum possible accuracy. Our 
architecture makes use of two independent processing 
streams for the RGB and depth images; perhaps an 
architecture where information from the opposite 
stream is allowed to gradually seep in before the final 
fusion would result in a model that is more aware of the 
“full picture.” Another promising application of depth 
information in computer vision is object segmentation, 
where 3-dimensional structure is especially important. 
This would be an interesting avenue for further research. 
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Abstract: The ultimate goal of this work is to develop a video summarization search engine that allows users to
identify an object in a video stream in a way that is analogous to finding a word in a text document. Detectron2,
a library for real time object detection and segmentation, is used to sample videos to extract what objects
appear in individual frames. This metadata is saved as high-dimensional vector embeddings using BERT. Topic
modeling is then run on the associated subtitles to automatically infer video-chapters to further aid semantic
search. Our model shows promising 80% detection confidence after training on the initial annotated images.
The model can be implemented in research across multiple disciplines to increase efficiency when analyzing
long video footages. Future work will enable our model to learn online so that users can easily label novel
objects and activities for the model to learn.

1. INTRODUCTION

1.1 Motivation

We are currently in an information age, where
vast amounts of data continue being produced. A lot
of that information is in the form of video data.
According to a recent Cisco study, by 2021, 82% of
consumer internet traffic will be video [1]. This is
not a surprise as a lot of the video traffic that we
consume from popular video apps like TikTok to
large video search engines like YouTube are
omnipresent in today’s digital age.

Video data has the unique property that it has to
be viewed in order for visual information to be
extracted from it. For humans to view thousands of
hours of video data can be time consuming to say

the least. Our team is looking to find a way to
automate the process of finding information in
videos. We have built an automated search tool that
summarizes video content.  This work can be useful
for a lot of applications to objects in a video to find
it’s location (timestamp).

A video search tool that can summarize the video
feeds of “lengthy-videos” to save time and promote
efficiency.

The motivation of creating this web application was
to implement a solution to a problem that can
combine. Our current application uses analysis of
image segmentation to suggest video locations to
where the object of interest is, and allows for search
& highlighting of appearances within the video
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1.2 Related Works

Examination of current literature was done, and
there existed many different approaches to be taken
when considering video summarization. In one
instance, researchers converted videos and
transcripts to a semantic space, and clustering
techniques were applied to this data [2]. This
method was able to get a 58% average score relative
to manual video summaries.

In another case, an algorithm was developed to
analyze the difference between two frames of a
video, and by doing this determine “key frames” of
a video [3].

1.3 Problem Definition

We are trying to address the problem of video
search tools that can identify an object of interest in
a video, and searching video data in an automated
fashion. This requires object detection analysis and
being able to highlight or segment an object from an
image frame in the video. In our application, we
touched on creating customized objects and trained
the data Detectron’s Machine learning model.

2. METHODOLOGY

To summarize videos object recognition was first
considered. Rather than develop a model for this,
the PyTorch-based modular detection library
Detectron2 (Facebook Research)[4] was used.
Detectron2 provides capability for object detection
in an image, furthermore segmentation. The idea
was that this becomes useful for determining the
given objects in an image.

To make use of Detectron2, we divided videos into
frames of a frame rate at 1 fps (1 frame cut per
second of video). Each frame was then sent to
Detectron2, and the various objects in that frame
were recorded along with this current frame
number. After analyzing each frame of a video, this
recorded frame and object data was sent to the

frontend UI interface as a JSON and parsed to be
shown as timestamps to the user.

This remains the basic pipeline for operation,
furthermore, Detectron2 also provides functionality
for adding custom objects to it. Custom objects
were added to Detectron2 for a greater expansion of
domain specific objects. Images used to train
custom objects were scraped from google images
using a bulk image downloader chrome extension.
For 50 of scraped images annotated to Detectron2
for training, the model yielded 80% accuracy for
testing object recognition for the custom item.

Figure 1: A custom image being identified by Detectron2

3. RESULTS AND DISCUSSION

We would like to validate our work by comparing
our application’s detection mechanism to humans
who will mark the locations of objects and record
their timestamps as our gold standard marker.

Figure 2: Total loss iterated over 300 epochs
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The plotted graph displays the total loss of the
model for a custom object in our model over a
series of epochs. The Detectron2 model did very
well at adding custom objects to itself, even with a
“small” amount of train images (50). These results
indicate that training of Detectron2 onto more
images will generate a more accurate object
classifier. Some uncertainty appeared however with
some objects when placement in a given was not
two dimensional.

For instance, some objects appeared facing into the
photo, but since many google images for training
were facing horizontal or vertical, Detectron2 had
issues classifying these objects sometimes. Another
issue was with misclassification, as some objects
were being misclassified as a vegetable, but were a
vehicle. The given vehicles were boats, and the
vegetable was broccoli, so the issue likely is
associated with the polygon shape that Detectron2
uses for recognition.

4. CONCLUSIONS AND FUTURE WORK

Overall, the attempted solution aims to solve the
problem of detecting objects from a video using
NLP topical analysis provided by Detectron2. An
automatic video search tool such as this has a
variety of applications in many different industries
such as surveillance, custom object detection and
many more.

In a given video file, there could be a series of
frames that detects a certain object, however, some
frames in the range can be blurry or distorted which
Detectron2 does not recognise and therefore the
algorithm splits the object into two, even though
they should be one object. One of the ways to
address this issue would be to create a smooth
function that can predict the gaps in a series of
frames which are blurry or distorted.

The method of data collection for new object
addition is cumbersome, so another priority that

remains is to automate this. This can be done by
exploring use of the Toronto Data Platform which
assists human annotation, or by developing a tool.
Additionally, fixing the issues pertaining image
orientation in 2D space can be fixed using various
data augmentation techniques.
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Abstract: Voiceprint recognition is the process by which a trained model identifies the specific individual who 
is speaking arbitrary phrases. Speaker recognition is distinct from speech recognition, which involves 
converting spoken words to text, but these two types of systems are often combined in practice, as is the case 
with virtual assistants such as Siri, Alexa and Google Assistant. Currently, largely due to the training 
approaches used, many speaker recognition models can only identify speakers when a specific phrase is uttered 
by the speaker. In an attempt to address this issue, and to create a complete voiceprint recognition system, we 
have developed a multi-faceted software application in python. The application includes a neural network, a set 
of features that allow for flexible training on multiple words and phrases, and a user-friendly GUI. Our 
application can identify speakers with roughly 80% accuracy, although we are currently working to improve 
that. We plan on continuing to experiment with different approaches for training, with the goal of maximizing 
identification accuracy even when the speaker uses novel words and phrases. Future uses of our software could 
include audio captioning/transcription, and authentication for security or customer service purposes.  

1. INTRODUCTION 
1.1 Motivation  
Accurate voiceprint recognition systems are becoming 
increasingly important to develop more accessible and 
secure technology [1]. Voiceprint recognition models 
are used in areas such as voice assistants, two-step 
authentication security systems and customer service 
[2]. Two areas in which existing voiceprint recognition 
systems could improve are their ability to accurately 
differentiate between two speakers and their ability to 
accurately identify whether it is the same person 
speaking but under different conditions. These systems 
identify more than just speech itself; they are also 
taking background noise, echoes, and other sound 
features into account, all while constrained by the 
hardware upon which the sound source is recorded.  
 
We sought to build a voiceprint recognition model 
which could accurately differentiate between speakers 
in real time. 
 

1.2 Related Works  
In the past, the most common approaches to voiceprint 
recognition and verification models were Gaussian 
Mixture Models (GMMs) and hidden Markov Models 
(HMMs). The more common approach currently, and 
the one we developed, was using a convolutional 
neural network (CNN). The advantages and 
disadvantages of these approaches can be summarized 
by Mingyu Ma’s paper [3], or by this Microsoft 
Research Paper [4] from 2014. One advantage of using 
a CNN is that it promotes more flexibility in handling 
the natural variability in speech. For a few years, the 
CNN has been known to be an effective approach for 
identifying and verifying voice using machine 
learning. 
 
1.3 Problem Definition 
Using a CNN, we sought to build a model which could 
accurately identify speakers in real time using multi-
phrase voiceprint recognition with the aim of 
discovering improved ways of collecting and cleaning 
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training data to maximize the accuracy of 
identification. 
   

2. METHODOLOGY 
2.1  Prototype 
In building a multi-phrase voiceprint recognition 
system, our team started by implementing a single-
phrase system. This initial system was modelled after 
Jurgen Arias’s work on voice classification, and used 
Librosa, Keras (sequential neural network), and 
MFCCs (Arias, 2019). To fully test our initial single 
voice classification system, we used data from an 
open-source Alexa dataset containing 86 users saying 
the word Alexa 4 times. Our group added data of 
ourselves saying Alexa 4 times to add to this data and 
ensure that the model is working through testing.  
  
2.2  Data Processing 
To convert audio to data that can be understood by the 
model, our group split the original audio file into 40 
different audio chunks. For each chunk, a coefficient, 
namely a Mel-Frequency Cepstrum Coefficient 
(MFCC) was created. This MFCC was generated 
based on the frequency of the audio chunk put through 
a Fourier transform to bias the coefficient towards 
small changes in frequency. This created a 40 long 
decimal array that was fed into the model.  
  
Before the training of the model, the data needed to be 
processed in order to avoid overfitting and ensure that 
the model focused on the correct indicators. An 
example of a situation that we wanted the model to 
avoid paying attention to is the time in-between the 
start of the recording and the first sound. To prevent 
the model from focusing on this, we utilized Librosa to 
add a hamming window to our data, which softened 
out large changes in audio. We also used a noise 
removal formula to help limit the bias of background 
noise from different microphones. Using the single 
phrase system, our team tried to increase the efficiency 
of the model and create code that can be expanded 
upon with future iterations of the model.   
  
2.3  Final Design 

After obtaining satisfactory results with the single 
phrase system, our team split up to build out as many 
features as possible for the final design. A data 
collection system that works with the previous model 
requires sentences to be split up into words. Our team 
used PyDub (the python library) to analyze full 
sentences and return separate audio files of all the 
individual words used. This relied on the silences in-
between words  and greatly sped up the data collection 
process. Next, we increased the accuracy of the model 
by iterating on the model. For example, the audio 
chunk number of 24 was determined a better indicator 
than the original 40. The last task was to bring all these 
pieces together into an application with a simple UI. 
The most significant feature of the UI is to test the 
model live using live input from a microphone while 
continually updating the UI. 
 

3. RESULTS AND DISCUSSION 
 

We trained the final model on 4 subjects using 35 
seconds of speech data per subject. We broke the data 
up into between 60 and 70 audio chunks based on how 
fast the subject spoke. We evaluated the model in 2 
ways: using prerecorded test data of each subject, and 
with live input during a meeting between the 4 
subjects. The model had 88% accuracy on the test data. 
It averaged 80% accuracy during the live input, 
however it varied with different conversations. During 
presentations, when subjects spoke one at a time 
without interruption, the model reached 88% accuracy, 
however during regular meetings where there was a lot 
of back and forth, the accuracy averaged 72%. The 
lower accuracy during the live input was expected for 
a few reasons. First, conversations between subjects 
often have audio input from more than one party, in 
the form of background noise or talking over each 
other. And second, we had to collect the audio over set 
intervals to update the GUI, so we had to balance the 
speed of the prediction in the GUI with the quality of 
the audio chunks we collected.  
 
We chose to only use 35 seconds of audio data for 
training because we prioritized usability during 
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meetings and presentations, and we wanted to be able 
to easily add subjects to the training set during the 
demonstration at CUCAI 2021. For different 
applications with more subjects or where higher 
accuracy is required, more training data should be used 
so that the model has more data to learn the unique 
identifiers of each subject.  
 
A limitation we had was that we were displaying the 
predictions live. This meant we had to cut audio into 
intervals before breaking it up naturally, so we often 
had words cut in half at the beginning and end of 
intervals. For different applications, for example 
transcription, the audio would be broken up more 
naturally after it was all recorded, and would have 
better accuracy. 

 
4. CONCLUSIONS AND FUTURE WORK 

 
The progression from a single phrase model to a multi-
phrase model went smoothly, and the final model 
performed well considering the limited amount of 
speech data that was used to train it. In the final stages 
of development, various software components were 
successfully merged into a usable application. As 
outlined in the previous section, there are certain 
limitations on what the final model can do, and more 
robust testing under various conditions is still required. 
Nonetheless, results so far have been very promising, 
and there do not appear to be any insurmountable 
barriers to further improvement of the model. Future 
work could include continuing to search for better 
phrases to train the model on, and continuing to 
optimize the identification accuracy through tuning of 
the model parameters.  
 
Many of the major applications of voice identification 
technology are in authentication for security and 
customer service purposes, and in audio captioning. In 
the security and customer service space, our 
application could be used in conjunction with other 
methods to allow for real-time, continuous verification 
of identity while a speaker is speaking. Our application 
could also be used in digital audio captioning to 
identify a speaker across multiple audio files. 
Ultimately, speaker identification is a very general 

problem, so our application could be useful in many 
different contexts. 
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